科目: 來源: 題型:
【題目】已知兩圓的圓心分別為,P為一個動點,且直線的斜率之積為.
(Ⅰ)求動點P的軌跡M的方程;
(Ⅱ)是否存在過點A(2,0)的直線l與軌跡M交于不同的兩點C、D,使得?若存在,求直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在等腰中, ,腰長為, 、分別是邊、的中點,將沿翻折,得到四棱錐,且為棱中點, .
(Ⅰ)求證: 平面;
(Ⅱ)在線段上是否存在一點,使得平面?若存在,求二面角的余弦值,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某高中生調(diào)查了當?shù)啬承^(qū)的50戶居民由于臺風造成的經(jīng)濟損失,將收集的數(shù)據(jù)分成三組,并作出如下頻率分布直方圖:
(1)在直方圖的經(jīng)濟損失分組中,以各組的區(qū)間中點值代表該組的各個值,并以經(jīng)濟損失落入該區(qū)間的頻率作為經(jīng)濟損失取該區(qū)間中點值的概率(例如:經(jīng)濟損失則取,且的概率等于經(jīng)濟損失落入的頻率),F(xiàn)從當?shù)氐木用裰须S機抽出2戶進行捐款援助,設抽出的2戶的經(jīng)濟損失的和為,求的分布列和數(shù)學期望.
(2)臺風后居委會號召小區(qū)居民為臺風重災區(qū)捐款,此高中生調(diào)查的50戶居民捐款情況如下表,在表格空白處填寫正確數(shù)字,并說明是否有95%以上的把握認為捐款數(shù)額多于或少于500元和自身經(jīng)濟損失是否到4000元有關?
經(jīng)濟損失不超過4000元 | 經(jīng)濟損失超過4000元 | 合計 | |
捐款超過500元 | 30 | ||
捐款不超過500元 | 6 | ||
合計 |
附:臨界值表參考公式: .
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 來源: 題型:
【題目】某廠擬用集裝箱托運甲、乙兩種貨物,集裝箱的體積、重量、可獲利潤和托運能力等限制數(shù)據(jù)列在表中,如何設計甲、乙兩種貨物應各托運的箱數(shù)可以獲得最大利潤,最大利潤是多少?
貨物 | 體積箱 | 重量箱 | 利潤百元箱 |
甲 | 5 | 2 | 20 |
乙 | 4 | 5 | 10 |
托運限制 | 24 | 13 |
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為(限定).
(1)寫出曲線的極坐標方程,并求與交點的極坐標;
(2)射線與曲線與分別交于點(異于原點),求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)是定義域為的奇函數(shù),當時,.
()求出函數(shù)在上的解析式;
()畫出函數(shù)的圖象,并根據(jù)圖象直接寫出的單調(diào)區(qū)間;
()求使時的的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題共14分)如圖,在三棱錐中, 底面
,點, 分別在棱上,且(Ⅰ)求證: 平面;(Ⅱ)當為的中點時,求與平面所成的角的大;(Ⅲ)是否存在點使得二面角為直二面角?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)有兩個極值點, ().
(1)求實數(shù)的取值范圍;
(2)設,若函數(shù)的兩個極值點恰為函數(shù)的兩個零點,當時,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左右焦點分別為, 上的動點到兩焦點的距離之和為4,當點運動到橢圓的上頂點時,直線恰與以原點為圓心,以橢圓的離心率為半徑的圓相切.
(1)求橢圓的方程;
(2)設橢圓的左右頂點分別為,若交直線于兩點.問以為直徑的圓是否過定點?若過定點,請求出該定點坐標;若不過定點,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com