科目: 來(lái)源: 題型:
【題目】已知函數(shù),
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)若時(shí),關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若數(shù)列滿足, ,記的前項(xiàng)和為,求證: .
【答案】(I);(II);(III)證明見(jiàn)解析.
【解析】試題分析:(Ⅰ)求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;(Ⅱ)當(dāng)時(shí),因?yàn)?/span>,所以顯然不成立,先證明因此時(shí), 在上恒成立,再證明當(dāng)時(shí)不滿足題意,從而可得結(jié)果;(III)先求出等差數(shù)列的前項(xiàng)和為,結(jié)合(II)可得,各式相加即可得結(jié)論.
試題解析:(Ⅰ)由,得.所以
令,解得或(舍去),所以函數(shù)的單調(diào)遞減區(qū)間為 .
(Ⅱ)由得,
當(dāng)時(shí),因?yàn)?/span>,所以顯然不成立,因此.
令,則,令,得.
當(dāng)時(shí), , ,∴,所以,即有.
因此時(shí), 在上恒成立.
②當(dāng)時(shí), , 在上為減函數(shù),在上為增函數(shù),
∴,不滿足題意.
綜上,不等式在上恒成立時(shí),實(shí)數(shù)的取值范圍是.
(III)證明:由知數(shù)列是的等差數(shù)列,所以
所以
由(Ⅱ)得, 在上恒成立.
所以. 將以上各式左右兩邊分別相加,得
.因?yàn)?/span>
所以
所以.
【題型】解答題
【結(jié)束】
22
【題目】已知直線, (為參數(shù), 為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的直角坐標(biāo)方程為.
(Ⅰ)將曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為、,求的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】以下命題為假命題的是( )
A. “若m>0,則方程x2+x-m=0有實(shí)數(shù)根”的逆命題
B. “面積相等的三角形全等”的否命題
C. “若xy=1,則x,y互為倒數(shù)”的逆命題
D. “若A∪B=B,則AB”的逆否命題
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù),.,e為自然對(duì)數(shù)的底數(shù).
(1)如果函數(shù)在(0, )上單調(diào)遞增,求m的取值范圍;
(2)設(shè),,且,求證:.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(本小題共13分)
已知, 或1, ,對(duì)于, 表示U和V中相對(duì)應(yīng)的元素不同的個(gè)數(shù).
(Ⅰ)令,存在m個(gè),使得,寫(xiě)出m的值;
(Ⅱ)令,若,求證: ;
(Ⅲ)令,若,求所有之和.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若, ,求函數(shù)圖像上任意一點(diǎn)處切線斜率的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】函數(shù)為參數(shù),
(1)解關(guān)于的不等式;
(2)當(dāng)最大值為,最小值為,若,求參數(shù)的取值范圍;
(3)若在區(qū)間上滿足有兩解,求的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求,判斷函數(shù)的單調(diào)性并證明.
(2)對(duì)任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=,g(x)=(a>0,且a≠1).
(1)求函數(shù)φ(x)=f(x)+g(x)的定義域;
(2)試確定不等式f(x)≤g(x)中x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com