科目: 來源: 題型:
【題目】已知直線.
(1)若直線不經(jīng)過第四象限,求的取值范圍;
(2)若直線交軸負(fù)半軸于,交軸正半軸于,求的面積的最小值并求此時(shí)直線的方程;
(3)已知點(diǎn),若點(diǎn)到直線的距離為,求的最大值并求此時(shí)直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,函數(shù).
(1)若關(guān)于的方程的解集中恰有一個(gè)元素,求的值;
(2)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用給人民群眾的健康帶來了一定的危害.為了給消費(fèi)者帶來放心的蔬菜,某農(nóng)村合作社每年投入資金萬元,搭建甲、乙兩個(gè)無公害蔬菜大棚,每個(gè)大棚至少要投入資金萬元,其中甲大棚種西紅柿,乙大棚種黃瓜.根據(jù)以往的種菜經(jīng)驗(yàn),發(fā)現(xiàn)種西紅柿的年收入、種黃瓜的年收入與各自的資金投入(單位:萬元)滿足,.設(shè)甲大棚的資金投入為(單位:萬元),每年兩個(gè)大棚的總收入為(單位:萬元).
(1)求的值;
(2)試問如何安排甲、乙兩個(gè)大棚的資金投入,才能使總收入最大.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,函數(shù).
(1)若關(guān)于的方程的解集中恰有一個(gè)元素,求的值;
(2)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到定點(diǎn)的距離與它到直線的距離相等.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)動(dòng)直線與曲線相切于點(diǎn),與直線相交于點(diǎn).
證明:以為直徑的圓恒過軸上某定點(diǎn).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓 ()的離心率為,且點(diǎn)在橢圓上,設(shè)與平行的直線與橢圓相交于, 兩點(diǎn),直線, 分別與軸正半軸交于, 兩點(diǎn).
(I)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)判斷的值是否為定值,并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,且投資1萬元時(shí)的收益為萬元,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,且投資1萬元時(shí)的收益為0.5萬元,
(1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬元?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=2a·4x-2x-1.
(1)當(dāng)a=1時(shí),解不等式f(x)>0;
(2)當(dāng)a=,x∈[0,2]時(shí),求f(x)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com