科目: 來源: 題型:
【題目】過橢圓W:的左焦點(diǎn)作直線交橢圓于兩點(diǎn),其中 ,另一條過的直線交橢圓于兩點(diǎn)(不與重合),且點(diǎn)不與點(diǎn)重合.過作軸的垂線分別交直線,于,.
(Ⅰ)求點(diǎn)坐標(biāo)和直線的方程;
(Ⅱ)求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的極小值;
(Ⅱ)當(dāng)時,討論的單調(diào)性;
(Ⅲ)若函數(shù)在區(qū)間上有且只有一個零點(diǎn),求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,三棱柱的側(cè)面是平行四邊形,,平面平面,且分別是的中點(diǎn).
(1)求證:平面;
(2)當(dāng)側(cè)面是正方形,且時,
(。┣蠖娼的大。
(ⅱ)在線段上是否存在點(diǎn),使得?若存在,指出點(diǎn)的位置;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知某海濱浴場海浪的高度y(米)是時間t的(0≤t≤24,單位:小時)函數(shù),記作y=f(t),下表是某日各時的浪高數(shù)據(jù):
t(h) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(m) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
經(jīng)長期觀測,y=f(t)的曲線可近似地看成是函數(shù)y=Acosωt+b的圖象.
(1)根據(jù)以上數(shù)據(jù),求出函數(shù)y=Acosωt+b的最小正周期T、振幅A及函數(shù)表達(dá)式;
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時才對沖浪愛好者開放,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8時到晚上20時之間,有多長時間可供沖浪者進(jìn)行運(yùn)動?
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù),,,記.
(1)求曲線在處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時,若函數(shù)沒有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某課題小組共10人,已知該小組外出參加交流活動次數(shù)為1,2,3的人數(shù)分別為3,3, 4,現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會.
(1)記“選出2人外出參加交流活動次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;
(2)設(shè)X為選出2人參加交流活動次數(shù)之差的絕對值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線C1:y=cos x,C2:y=sin (2x+),則下面結(jié)論正確的是( )
A. 把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2
B. 把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2
C. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2
D. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2
查看答案和解析>>
科目: 來源: 題型:
【題目】某日A,B,C三個城市18個銷售點(diǎn)的小麥價格如下表:
銷售點(diǎn)序號 | 所屬城市 | 小麥價格(元/噸) | 銷售點(diǎn)序號 | 所屬城市 | 小麥價格(元/噸) |
1 | A | 2420 | 10 | B | 2500 |
2 | C | 2580 | 11 | A | 2460 |
3 | C | 2470 | 12 | A | 2460 |
4 | C | 2540 | 13 | A | 2500 |
5 | A | 2430 | 14 | B | 2500 |
6 | C | 2400 | 15 | B | 2450 |
7 | A | 2440 | 16 | B | 2460 |
8 | B | 2500 | 17 | A | 2460 |
9 | A | 2440 | 18 | A | 2540 |
(1)甲以B市5個銷售點(diǎn)小麥價格的中位數(shù)作為購買價格,乙從C市4個銷售點(diǎn)中隨機(jī)挑選2個了解小麥價格.記乙挑選的2個銷售點(diǎn)中小麥價格比甲的購買價格高的個數(shù)為,求的分布列及數(shù)學(xué)期望;
(2)如果一個城市的銷售點(diǎn)小麥價格方差越大,則稱其價格差異性越大.請你對A,B,C三個城市按照小麥價格差異性從大到小進(jìn)行排序(只寫出結(jié)果).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)在處取得極值.
(1)當(dāng)時,求曲線在處的切線方程;
(2)若函數(shù)有三個零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com