例10 求的最小值
于是所求橢圓的方程為
所以,解得
所以必有,此時當(dāng)時,(從而)有最大值,
于是從而解得
若,則當(dāng)時,(從而)有最大值。
錯解分析 盡管上面解法的最后結(jié)果是正確的,但這種解法卻是錯誤的。結(jié)果正確只是碰巧而已。由當(dāng)時,有最大值,這步推理是錯誤的,沒有考慮到的取值范圍。事實上,由于點在橢圓上,所以有,因此在求的最大值時,應(yīng)分類討論。即:
于是所求橢圓的方程為
所以 ,由此解得:
所以當(dāng)時,有最大值,從而也有最大值。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com