【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,水面下降2m,水面寬_____m.
【答案】4.
【解析】
根據(jù)已知得出直角坐標(biāo)系,進(jìn)而求出二次函數(shù)解析式,再通過把y=-2代入拋物線解析式得出水面寬度,即可得出答案.
建立平面直角坐標(biāo)系,設(shè)橫軸x通過AB,縱軸y通過AB中點(diǎn)O且通過C點(diǎn),則通過畫圖可得知O為原點(diǎn),
拋物線以y軸為對(duì)稱軸,且經(jīng)過A,B兩點(diǎn),OA和OB可求出為AB的一半2米,拋物線頂點(diǎn)C坐標(biāo)為(0,2),
通過以上條件可設(shè)頂點(diǎn)式y=ax2+2,其中a可通過代入A點(diǎn)坐標(biāo)(﹣2,0),
到拋物線解析式得出:a=﹣0.5,所以拋物線解析式為y=﹣0.5x2+2,
當(dāng)水面下降2米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:
當(dāng)y=﹣2時(shí),對(duì)應(yīng)的拋物線上兩點(diǎn)之間的距離,也就是直線y=﹣2與拋物線相交的兩點(diǎn)之間的距離,
可以通過把y=﹣2代入拋物線解析式得出:
﹣2=﹣0.5x2+2,
解得:x=±2,所以水面寬度增加到4米,
故答案為:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的頂點(diǎn)在坐標(biāo)原點(diǎn),正方形的邊與在同一直線上, 與在同一直線上,且,邊和邊所在直線的解析式分別為: 和,則點(diǎn)的坐標(biāo)是( )
A.(6,-1)B.(7,-1)C.(7,-2)D.(6,-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2016年“雙十一”期間,某快遞公司計(jì)劃租用甲、乙兩種車輛快遞貨物,從貨物量來計(jì)算:若租用兩種車輛合運(yùn),10天可以完成任務(wù);若單獨(dú)租用乙種車輛,完成任務(wù)的天數(shù)是單獨(dú)租用甲種車輛完成任務(wù)天數(shù)的2倍.
(1)求甲、乙兩種車輛單獨(dú)完成任務(wù)分別需要多少天?
(2)已知租用甲、乙兩種車輛合運(yùn)需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨(dú)租甲種車輛、單獨(dú)租乙種車輛這三種租車方案中,哪一種租金最少?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
①; ②; ③……
根據(jù)上述規(guī)律解決下列問題:
(1)完成第四個(gè)等式: ;
(2)猜想第個(gè)等式(用含的式子表示),并證明其正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是( )
A.帶①去B.帶②去C.帶③去D.帶①和②去
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究:
(1)計(jì)算判斷:(計(jì)算并判斷大小,填寫符號(hào):“>”“<”或“=”)
①當(dāng),時(shí),_____;
②當(dāng),時(shí),_____;
③當(dāng),時(shí),______;
④當(dāng),時(shí),______;
⑤當(dāng),時(shí),______;
⑥當(dāng),時(shí),_______;
…
(2)歸納猜想:猜想并寫出關(guān)于與(,是常數(shù),且,)之間的數(shù)量關(guān)系;
(3)探究證明:請(qǐng)補(bǔ)全以下證明過程:
證明:根據(jù)一個(gè)實(shí)數(shù)的平方是非負(fù)數(shù),可得,
∴,
∵,,
…
(4)實(shí)踐應(yīng)用:要制作面積為的長(zhǎng)方形(或正方形)框架,直接利用探究得出的結(jié)論,求出框架周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A,C,為半徑是6的⊙O上兩點(diǎn),點(diǎn)B為的中點(diǎn),以線段BA,BC為鄰邊作菱形ABCD,使點(diǎn)D落在⊙O內(nèi)(不含圓周上),則下列結(jié)論:①直線BD必過圓心O;②菱形ABCD的邊長(zhǎng)a的取值范圍是0<a<10;③若點(diǎn)D與圓心O重合,則∠ABC=120°;④若DO=2,則菱形ABCD的邊長(zhǎng)為或.其中正確的是( 。
A. ①③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為豐富綜合實(shí)踐活動(dòng),開設(shè)了四個(gè)實(shí)驗(yàn)室如下:A.物理;B.化學(xué);C.信息;D.生物.為了解學(xué)生最喜歡哪個(gè)實(shí)驗(yàn)室,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,每位被調(diào)查的學(xué)生都選擇了一個(gè)自己最喜歡的實(shí)驗(yàn)室,調(diào)查后將調(diào)查結(jié)果繪制成了如圖統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問題
(1)求這次被調(diào)查的學(xué)生人數(shù).
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)求出扇形統(tǒng)計(jì)圖中B對(duì)應(yīng)的圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,線段AM為BC邊上的中線.動(dòng)點(diǎn)D在直線AM上時(shí),以CD為一邊在CD的下方作等邊△CDE,連結(jié)BE.
(1)求∠CAM的度數(shù);
(2)若點(diǎn)D在線段AM上時(shí),求證:△ADC≌△BEC;
(3)當(dāng)動(dòng)D在直線AM上時(shí),設(shè)直線BE與直線AM的交點(diǎn)為O,試判斷∠AOB是否為定值?并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com