精英家教網 > 初中數學 > 題目詳情

【題目】已知:如圖,在菱形中,為邊的中點,與對角線交于點,過于點,

,求的長;

求證:

【答案】(1)2;(2)見解析

【解析】

(1)根據菱形的對邊平行可得AB∥CD,再根據兩直線平行,內錯角相等可得∠1=∠ACD,所以∠ACD=∠2,根據等角對等邊的性質可得CM=DM,再根據等腰三角形三線合一的性質可得CE=DE,然后求出CD的長度,即為菱形的邊長BC的長度;

(2)先利用“邊角邊”證明△CEM和△CFM全等,根據全等三角形對應邊相等可得ME=MF,延長ABDF于點G,然后證明∠1=∠G,根據等角對等邊的性質可得AM=GM,再利用“角角邊”證明△CDF和△BGF全等,根據全等三角形對應邊相等可得GF=DF,最后結合圖形GM=GF+MF即可得證.

解:四邊形是菱形,

,

,

,

,

,

,

,

,

;

證明:為邊的中點,

,

在菱形中,平分

,

中,

,

,

延長的延長線于點,

,

,

,

中,

,

,

由圖形可知,,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,在四邊形中,,,對角線交于點,平分

1)求證:四邊形是菱形;

2)如圖2,在(1)的條件下,過點的延長線于點,連接.若,,求的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】慶元大道兩側需要綠化,某綠化組承擔了此項任務,綠化組工作一段時間后,提高了工作效率,該綠化組完成的綠化面積S(單位m2)與工作時間t(單位:h)之間的函數關系如圖所示,則該綠化組提高工作效率前每小時完成的綠化面積是( )

A. 200B. 300C. 400D. 500

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,CE是∠DCB的平分線,FAB的中點,AB=6,BC=5,則AEEFFB為( 。

A. 1:2:3 B. 2:1:3 C. 3:2:1 D. 3:1:2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,M、N分別是邊ADBC邊上的中點,且ABM≌△DCME、F分別是線段BM、CM的中點.

1)求證:平行四邊形ABCD是矩形.

2)求證:EFMN互相垂直.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形中,,,且,則的長度是(

A.3B.4C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,BC=DCACBD相交于點O,則①CA平分∠BCD;②ACBD;③∠ABC=ADC=90°;④四邊形ABCD的面積為ACBD.上述結論正確的個數是( 。

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,∠ACB90°ACBC,ADCEBECE,垂足分別是點DE

(1)求證:BEC≌△CDA;

(2)當AD3BE1時,求DE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商店將進價為8元的商品按每件10元售出,每天可售出200件,現在采取提高商品售價減少銷售量的辦法增加利潤,如果這種商品每件的銷售價每提高0.5元其銷售量就減少10件,

1)問應將每件售價定為多少元時,才能使每天利潤為640元且成本最少?

2)問應將每件售價定為多少元時,才能使每天利潤最大?

查看答案和解析>>

同步練習冊答案