【題目】把一張寬為1cm的長方形紙片ABCD折疊成如圖所示的陰影圖案,頂點(diǎn)A,D互相重合,中間空白部分是以E為直角頂點(diǎn),腰長為2cm的等腰直角三角形,則紙片的長AD(單位:cm)為( )
A.B.C.D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校數(shù)學(xué)興趣小組的小明同學(xué)為測量位于玉溪大河畔的云銅礦業(yè)大廈AB的高度,小明在他家所在的公寓樓頂C處測得大廈頂部A處的仰角為45°,底部B處的俯角為30°.已知公寓高為40m,請你幫助小明計算公寓樓與礦業(yè)大廈間的水平距離BD的長度及礦業(yè)大廈AB的高度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣1經(jīng)過A(﹣0.5,0),B(﹣4,﹣3)兩點(diǎn),交y軸于點(diǎn)C.
(1)求拋物線的表達(dá)式;
(2)若點(diǎn)P是拋物線對稱軸上一動點(diǎn),求使得PA+PC最小時P點(diǎn)的坐標(biāo);
(3)直線BC交x軸于點(diǎn)D,連結(jié)AC,若點(diǎn)P是y軸上一動點(diǎn),且點(diǎn)P不與點(diǎn)C重合,是否存在點(diǎn)P,使得以P,B,C為頂點(diǎn)的三角形與△ACD相似?若存在,確定點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于和,與軸交于點(diǎn).
(1)求該拋物線的解析式;
(2)繞點(diǎn)旋轉(zhuǎn)的直線:與軸相交于點(diǎn),與拋物線相交于點(diǎn),且滿足時,求直線的解析式;
(3)點(diǎn)為拋物線上的一點(diǎn),點(diǎn)為拋物線對稱軸上的一點(diǎn),是否存在以點(diǎn),,,為頂點(diǎn)的平行四邊形,若存在,請直接寫出點(diǎn)的坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了豐富學(xué)生課余生活,決定開設(shè)以下體育課外活動項(xiàng)目:A籃球;B乒乓球;C羽毛球;D足球,為了解學(xué)生最喜歡哪一種活動項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調(diào)查的學(xué)生共有__________人;
(2)請你將條形統(tǒng)計圖(1)補(bǔ)充完整;
(3)在平時的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新冠疫情期間,某校開展線上教學(xué),有“錄播”和“直播”兩種教學(xué)方式供學(xué)生選擇其中一種.為分析該校學(xué)生線上學(xué)習(xí)情況,在接受這兩種教學(xué)方式的學(xué)生中各隨機(jī)抽取40人調(diào)查學(xué)習(xí)參與度,數(shù)據(jù)整理結(jié)果如表(數(shù)據(jù)分組包含左端值不包含右端值).
參與度 人數(shù) 方式 | 0.2~0.4 | 0.4~0.6 | 0.6~0.8 | 0.8~1 |
錄播 | 4 | 16 | 12 | 8 |
直播 | 2 | 10 | 16 | 12 |
(1)你認(rèn)為哪種教學(xué)方式學(xué)生的參與度更高?簡要說明理由.
(2)從教學(xué)方式為“直播”的學(xué)生中任意抽取一位學(xué)生,估計該學(xué)生的參與度在0.8及以上的概率是多少?
(3)該校共有800名學(xué)生,選擇“錄播”和“直播”的人數(shù)之比為1:3,估計參與度在0.4以下的共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行鋼筆書法大賽,對各年級同學(xué)的獲獎情況進(jìn)行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.
請結(jié)合圖中相關(guān)信息解答下列問題:
(1)扇形統(tǒng)計圖中三等獎所在扇形的圓心角的度數(shù)是______度;
(2)請將條形統(tǒng)計圖補(bǔ)全;
(3)獲得一等獎的同學(xué)中有來自七年級,有來自九年級,其他同學(xué)均來自八年級.現(xiàn)準(zhǔn)備從獲得一等獎的同學(xué)中任選2人參加市級鋼筆書法大賽,請通過列表或畫樹狀圖的方法求所選出的2人中既有八年級同學(xué)又有九年級同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABC中,AD是BC邊上的中線,點(diǎn)E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于F,連接CF.
(1)求證:AEF≌△DEB;
(2)若∠BAC=90°,求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,已知∠ACB=90°,AC=BC=4,若點(diǎn)E在△ABC內(nèi)部運(yùn)動,且滿足AE2=BE2+2CE2,則點(diǎn)E的運(yùn)動路徑長是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com