【題目】已知:如圖,在ABC中,AB=AC,以AC為直徑作⊙OBC于點D,過點D作⊙O的切線交AB于點E,交AC的延長線于點F

1)求證:DEAB;

2tanBDE=, CF=3,求DF的長.

【答案】1見解析;(26

【解析】試題分析:連接OD,則有OD⊥EF,然后證明OD//AB即可得;

(2)連接AD,則有∠ADB=90°,通過證明△FCD∽△FDA ,可得 FC:FD=CD:DA,再根據(jù)tanBDE= ,通過推導(dǎo)即可得

試題解析:(1)連接ODEF切⊙O于點D,ODEF

又∵OD=OC,ODC=OCD,

AB=AC,ABC=OCD,ABC=ODC

ABOD,DEAB;

2連接AD

AC為⊙O的直徑,ADB=90°, B+BDE=90°,B+1=90°

BDE=∠1,

AB=AC,1=2又∵BDE =3,2=3,

FCDFDA ,

tanBDE=,tan2=

,

CF=3,FD=6

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于,兩點.

1)求該拋物線的解析式;

2)拋物線的對稱軸上是否存在一點,使的周長最小?若存在,請求出點的坐標,若不存在,請說明理由.

3)設(shè)拋物線上有一個動點,當點在該拋物線上滑動到什么位置時,滿足,并求出此時點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校260名學生參加植樹活動,要求每人植4-7棵,活動結(jié)束后隨機抽查了若干名學生每人的植樹量,并分為四種類型,A4棵;B5棵;C6棵;D7棵,將各類的人數(shù)繪制成扇形圖(如圖甲)和條形圖(圖乙),回答下列問題:

1)求這次抽查的學生數(shù);

2)補全圖甲和圖乙;

3)計算被抽查學生每人植樹量的平均數(shù),并估計這260名學生共植樹多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,點CD⊙O上,且點C的中點,過點 CAD的垂線 EF交直線 AD于點 E

1)求證:EF⊙O的切線;

2)連接BC,若AB=5BC=3,求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點,試分別根據(jù)下列條件,求出點的坐標。

1)點軸上;

2)點橫坐標比縱坐標大3;

3)點在過點,且與軸平行的直線上。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊各10人的比賽成績?nèi)缦卤?10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;

(2)計算乙隊的平均成績和方差;

(3)已知甲隊成績的方差是1.4,則成績較為整齊的是 隊.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象過點A(4,1)與正比例函數(shù)()的圖象相交于點B(,3),與軸相交于點C.

1)求一次函數(shù)和正比例函數(shù)的表達式;

2)若點D是點C關(guān)于軸的對稱點,且過點D的直線DEACBOE求點E的坐標;

3)在坐標軸上是否存在一點,使.若存在請求出點的坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABC中,AB=AC=6,BC=4,點D、E分別在邊AB、AC上,且AD=AE=1,連接DE、CD,點M、N、P分別是線段DE、BC、CD的中點,連接MP、PN、MN.

(1)求證:PMN是等腰三角形;

(2)將ADE繞點A逆時針旋轉(zhuǎn),

如圖2,當點D、E分別在邊AC兩側(cè)時,求證:PMN是等腰三角形;

ADE繞點A逆時針旋轉(zhuǎn)到第一次點D、E、C在一條直線上時,請直接寫出此時BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AD垂直BC于點D,且AD=BC,BC上方有一動點P滿足,則點PB、C兩點距離之和最小時,∠PBC的度數(shù)為(

A.30°B.45°C.60°D.90°

查看答案和解析>>

同步練習冊答案