【題目】已知關(guān)于x的一元二次方程.
(1)請你為m選取一個(gè)合適的整數(shù),使得到的方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)、是中你所得到的方程的兩個(gè)實(shí)數(shù)根,求:的值.
【答案】(1)m可取1;(2)4.
【解析】
(1)根據(jù)一元二次方程根的判別式的意義得到當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,即有42-4(m-1)>0,解得m<5,在此范圍內(nèi)m可取1;
(2)把m=1代入原方程得到方程整理為x2+4x=0,根據(jù)根與系數(shù)的關(guān)系得x1+x2=-4,x1x2=0,再變形-x1-x2+x1x2得到-(x1+x2)+x1x2,然后利用整體思想計(jì)算即可.
解:(1)當(dāng)時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,
即,解得,
所以m可取1;
(2)當(dāng)時(shí),方程整理為,
則,,
則.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過x軸正半軸上的任意一點(diǎn)P,作y軸的平行線,分別與反比例函數(shù)y=﹣和y=的圖象交于A、B兩點(diǎn).若點(diǎn)C是y軸上任意一點(diǎn),連接AC、BC,則△ABC的面積為( )
A. 3B. 4C. 5D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于任意三點(diǎn)A,B,C,給出如下定義:
如果矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點(diǎn)都在矩形的內(nèi)部或邊界上,則稱該矩形為點(diǎn)A,B,C的覆蓋矩形.點(diǎn)A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點(diǎn)A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是點(diǎn)A,B,C的覆蓋矩形,其中矩形AB3C3D3是點(diǎn)A,B,C的最優(yōu)覆蓋矩形.
(1)已知A(﹣2,3),B(5,0),C(t,﹣2).
①當(dāng)t=2時(shí),點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為 ;
②若點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為40,求直線AC的表達(dá)式;
(2)已知點(diǎn)D(1,1).E(m,n)是函數(shù)y=(x>0)的圖象上一點(diǎn),⊙P是點(diǎn)O,D,E的一個(gè)面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,3)、B(-6,0)、C(-1,0).
(1)畫出將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°圖形.
(2)填空:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,OABC的邊OC在x軸的正半軸上,OC=5,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)A(1,4).
(1)求反比例函數(shù)的關(guān)系式和點(diǎn)B的坐標(biāo);
(2)如圖②,過BC的中點(diǎn)D作DP∥x軸交反比例函數(shù)圖象于點(diǎn)P,連接AP、OP,求△AOP的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個(gè)問題:探究同一坐標(biāo)系中系數(shù)互為倒數(shù)的正、反比例函數(shù)與的圖象性質(zhì)小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對這兩個(gè)函數(shù)當(dāng)時(shí)的圖象性質(zhì)進(jìn)行了探究設(shè)函數(shù)與圖象的交點(diǎn)為A、下面是小明的探究過程:
(1)如圖所示,若已知A的坐標(biāo)為,則B點(diǎn)的坐標(biāo)為______.
(2)若A的坐標(biāo)為,P點(diǎn)為第一象限內(nèi)雙曲線上不同于點(diǎn)B的任意一點(diǎn).
①設(shè)直線PA交x軸于點(diǎn)M,直線PB交x軸于點(diǎn)求證:.
證明過程如下:設(shè),直線PA的解析式為.
則
解得
所以,直線PA的解析式為______.
請把上面的解答過程補(bǔ)充完整,并完成剩余的證明.
②當(dāng)P點(diǎn)坐標(biāo)為時(shí),判斷的形狀,并用k表示出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠A,∠B,∠C的對邊分別是a,b,c,關(guān)于x的方程a(1﹣x2)+2bx+c(1+x2)=0有兩個(gè)相等實(shí)根,且3c=a+3b
(1)試判斷△ABC的形狀;
(2)求sinA+sinB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,若AF=4,AB=7.
(1)求DE的長度;
(2)試猜想:直線BE與DF有何位置關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=7.5,AC=9,S△ABC=.動點(diǎn)P從A點(diǎn)出發(fā),沿AB方向以每秒5個(gè)單位長度的速度向B點(diǎn)勻速運(yùn)動,動點(diǎn)Q從C點(diǎn)同時(shí)出發(fā),以相同的速度沿CA方向向A點(diǎn)勻速運(yùn)動,當(dāng)點(diǎn)P運(yùn)動到B點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動,以PQ為邊作正△PQM(P、Q、M按逆時(shí)針排序),以QC為邊在AC上方作正△QCN,設(shè)點(diǎn)P運(yùn)動時(shí)間為t秒.
(1)求cosA的值;
(2)當(dāng)△PQM與△QCN的面積滿足S△PQM=S△QCN時(shí),求t的值;
(3)當(dāng)t為何值時(shí),△PQM的某個(gè)頂點(diǎn)(Q點(diǎn)除外)落在△QCN的邊上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com