【題目】如圖,平面直角坐標(biāo)系中,直線1分別交軸、軸于、兩點(diǎn),點(diǎn)的坐標(biāo)為,,過(guò)點(diǎn)的直線與軸交于點(diǎn).
(1)求直線的解析式及點(diǎn)的坐標(biāo).
(2) 點(diǎn)在軸上從點(diǎn)向點(diǎn)以每秒1個(gè)單位長(zhǎng)的速度運(yùn)動(dòng)(),過(guò)點(diǎn)分別作,, 交、于點(diǎn)、,連接,點(diǎn)為的中點(diǎn).
①判斷四邊形的形狀并證明;
②求出t為何值時(shí)線段DG的長(zhǎng)最短.
(3)點(diǎn)是軸上的點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn),使以、、、為項(xiàng)點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
【答案】(1);(2)①矩形;證明見(jiàn)解析②時(shí),DG的長(zhǎng)最短(3)存在;,,,,
【解析】
(1)根據(jù)有一個(gè)角為30°的直角三角形的性質(zhì),求出OB,再利用待定系數(shù)法即可求解;
(2)①根據(jù)有一個(gè)角是直角的平行四邊形是矩形,判斷出四邊形DEBF是矩形;②利用點(diǎn)到直線的距離中垂線短最短即可;
(3)設(shè)出點(diǎn)P(0,m)的坐標(biāo),先利用平行四邊形的性質(zhì)作出圖形,求出點(diǎn)Q的坐標(biāo),再利用菱形的四邊相等求出m即可.
(1)∵,
∴
又根據(jù)題意,
∴,
∴
設(shè)解析式為
代入,
得
∴的解析式:
∵在直線上,
∴,
∴:,
∵點(diǎn)C在x軸上,
∴
(2)如圖:
①∵,,OA=1,
∴,(勾股定理),
∴,
∴,
又∵,,
∴四邊形是平行四邊形(兩組對(duì)邊分別平行),
∴四邊形為矩形(有一個(gè)角是90°的平行四邊形是矩形),
②∵四邊形為矩形
∴(矩形對(duì)角線相等),
又因?yàn)?/span>為中點(diǎn),
∴,即G為矩形對(duì)角線的交點(diǎn),
要使DG最短,也就是DB最短,
∴只有BD⊥AC時(shí),BD最短,
∴CD=3,
∴
(3)如圖2,在坐標(biāo)平面內(nèi)是存在點(diǎn)Q,使以A、B、P、Q為頂點(diǎn)的四邊形是菱形,證明如下:
設(shè),,
∴直線AB的解析式為:,
作a∥BP,則直線a的解析式為:x=1,
作b∥AP,則直線b的解析式為:,
作c∥BA,則直線c的解析式為:,
以、、、為頂點(diǎn)的四邊形為菱形,則為等腰三角形
①以AB為對(duì)角線時(shí),有,
∴,
∵四邊形是菱形,
∴,即:,
∴,
∴,
∴;
② 以AB為邊時(shí),
情況1:AP為對(duì)角線時(shí),
∵,,
∴或,
∵AB的解析式為:,
AP的解析式為:或者,
∵四邊形APQB是菱形,
∴點(diǎn)Q過(guò)點(diǎn)A且PQ∥y軸的直線上,
∴或者,
情況2:以BP為對(duì)角線時(shí),
∵
此時(shí),
故存在4點(diǎn),,,,;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)長(zhǎng)為4cm,寬為3cm的長(zhǎng)方形木板在桌面上做無(wú)滑動(dòng)的翻滾(順時(shí)針?lè)较颍,木板點(diǎn)A位置的變化為A→Al→A2,其中第二次翻滾被面上一小木塊擋住,使木板與桌面成30°的角,則點(diǎn)A滾到A2位置時(shí)共走過(guò)的路徑長(zhǎng)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)把下列的證明過(guò)程補(bǔ)充完整:
已知,如圖,BCE、AFE是直線,AB∥CD,∠1=∠2,∠3=∠4,求證:AD∥BE.
證明:∵AB∥CD(已知)
∴∠4=∠______
∵∠3=∠4(已知)
∴∠3=∠______(等量代換)
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(等式的性質(zhì))
即∠BAF=∠______
∴∠3=∠______(等量代換)
∴AD∥BE______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)的圖象過(guò)M(1,3),N(-2,12)兩點(diǎn).
(1)求函數(shù)的解析式;
(2)試判斷點(diǎn)P(2a,-6a+8)是否在函數(shù)的圖象上,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前我市“校園手機(jī)”現(xiàn)象越來(lái)越受到社會(huì)關(guān)注,針對(duì)這種現(xiàn)象,重慶一中初三(1)班數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了學(xué)校若干名家長(zhǎng)對(duì)“中學(xué)生帶手機(jī)”現(xiàn)象的態(tài)度(態(tài)度分為:A.無(wú)所謂;B.基本贊成;C.贊成;D.反對(duì)),并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次抽樣調(diào)查中,共調(diào)查了多少名中學(xué)生家長(zhǎng);
(2)求出圖2中扇形C所對(duì)的圓心角的度數(shù),并將圖1補(bǔ)充完整;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)我校11000名中學(xué)生家長(zhǎng)中有多少名家長(zhǎng)持反對(duì)態(tài)度;
(4)在此次調(diào)查活動(dòng)中,初三(1)班和初三(2)班各有2位家長(zhǎng)對(duì)中學(xué)生帶手機(jī)持反對(duì)態(tài)度,現(xiàn)從中選2位家長(zhǎng)參加學(xué)校組織的家;顒(dòng),用列表法或畫(huà)樹(shù)狀圖的方法求選出的2人來(lái)自不同班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的中線,,交于點(diǎn),是的中點(diǎn),連接.
(1)求證:四邊形是平行四邊形;
(2)若四邊形的面積為,請(qǐng)直接寫(xiě)出圖中所有面積是的三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,點(diǎn)C在線段AB上,且AC=6cm,BC=14cm,點(diǎn)M、N分別是AC、BC的中點(diǎn).
(1)求線段MN的長(zhǎng)度;
(2)在(1)中,如果AC=acm,BC=bcm,其它條件不變,你能猜測(cè)出MN的長(zhǎng)度嗎?請(qǐng)說(shuō)出你發(fā)現(xiàn)的結(jié)論,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com