【題目】如圖,直線y= x+6分別與x軸、y軸交于A、B兩點(diǎn):直線y= xAB于點(diǎn)C,與過點(diǎn)A且平行于y軸的直線交于點(diǎn)D.點(diǎn)E從點(diǎn)A出發(fā),以每秒1個(gè)單位的進(jìn)度沿x軸向左運(yùn)動.過點(diǎn)Ex軸的垂線,分別交直線ABODP、Q兩點(diǎn),以PQ為邊向右作正方形PQMN.設(shè)正方形PQMN△ACD重疊的圖形的周長為L個(gè)單位長度,點(diǎn)E的運(yùn)動時(shí)間為t().

1)直接寫出點(diǎn)C和點(diǎn)A的坐標(biāo).

2)若四邊形OBQP為平行四邊形,求t的值.

30<t5時(shí),求Lt之間的函數(shù)解析式.

【答案】1;(22;(3.

【解析】

1)把y= x+6 y= x聯(lián)立組成方程組,解方程組求得方程組的解,即可得點(diǎn)C的坐標(biāo);在直線y= x+6中,令y=0,求得x的值,即可得點(diǎn)A的坐標(biāo);(2)用t表示出點(diǎn)PQ的坐標(biāo),求得PQ的長,由條件可知,BOQP,若使四邊形OBQP為平行四邊形,必須滿足OB=QP,由此可得,即可求得t值;(3)由題意可知,正方形PQMNACD重疊的圖形是矩形,由此求得Lt之間的函數(shù)解析式即可.

1C的坐標(biāo)為( ),A的坐標(biāo)為(8,0);

2)∵點(diǎn)B直線y= x+6y軸的交點(diǎn),

B0,6),

OB=6

A的坐標(biāo)為(8,0),

OA=8,

由題意可得,OE=8-t

P8-t,),Q8-t,

=10-2t,

由條件可知,BO∥QP,若使四邊形OBQP為平行四邊形,必須滿足OB=QP,

所以有 ,解得t=2

3)當(dāng)0t<5時(shí), .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一元二次方程ax2bxc0(a≠0)滿足4a2bc0,且有兩個(gè)相等的實(shí)數(shù)根,則( )

A. baB. c2aC. a(x2)20(a≠0)D. a(x2)20(a≠0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面解方程的步驟,在后面的橫線上填寫此步驟的依據(jù):

解:去分母,得.①依據(jù):_________

去括號,得.

移項(xiàng),得.②依據(jù):__________

合并同類項(xiàng),得.

系數(shù)化為1,得.

是原方程的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y1=kx+b(k≠0)與反比例函數(shù)y2=(m≠0)相交于A和B兩點(diǎn),且A點(diǎn)坐標(biāo)為(1,3),B點(diǎn)的橫坐標(biāo)為﹣3.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)根據(jù)圖象直接寫出使得y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午期間,小明、小亮等同學(xué)隨家長一同到某公園游玩,下面是購買門票時(shí),小明與他爸爸的對話(如圖),試根據(jù)圖中的信息,解答下列問題:

(1)他們共去了幾個(gè)成人,幾個(gè)學(xué)生?

(2)請你幫助算算,小明用更省錢的購票方式是指什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知甲沿周長為300米的環(huán)形跑道上按逆時(shí)針方向跑步,速度為a/秒,與此同時(shí)在甲后面100米的乙也沿該環(huán)形跑道按逆時(shí)針方向跑步,速度為3/.設(shè)運(yùn)動時(shí)間為t.

(1)a=5,求甲、乙兩人第1次相遇的時(shí)間;

(2)當(dāng)t=50時(shí),甲、乙兩人第1次相遇.

①求a的值;

②若時(shí),甲、乙兩人第1次相遇前,當(dāng)兩人相距120米時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=的圖象與直線y=﹣x+b都經(jīng)過點(diǎn)A(1,4),且該直線與x軸的交點(diǎn)為B.

(1)求反比例函數(shù)和直線的解析式;

(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校2019學(xué)年舉行席地繪畫大賽.共收到繪畫作品480件,其中的優(yōu)秀作品評出了一、二、三等獎.

占獲獎總數(shù)的幾分之幾

獲獎作品的件數(shù)

一等獎

b

二等獎

c

三等獎

a

96

1)則a= ;b= c= ;

2)學(xué)校決定為獲一等獎同學(xué)每人購買一個(gè)書包,獲得二等獎同學(xué)每人購買一個(gè)文具盒,獲得三等獎同學(xué)每人購買一支鋼筆,并且每位獲獎同學(xué)頒發(fā)一個(gè)證書,已知文具盒單價(jià)是書包單價(jià)的,證書的單價(jià)是文具盒單價(jià)的,鋼筆的單介是文具盒單價(jià)的,學(xué)校購買書包、文具盒、鋼筆共用4000元,那么學(xué)校購買證書共用了多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦期間,某文具店購進(jìn) 只兩種型號的文具進(jìn)行銷售,其進(jìn)價(jià)和售價(jià)如表:

型號

進(jìn)價(jià)(元/只)

售價(jià)(元/只)

A

10

12

B

15

23

1)該店用 元可以購進(jìn)AB兩種型號的文具各多少只?

2)在()的條件下,若把所購進(jìn)A,B兩種型號的文具全部銷售完,利潤率有沒有超過 ?請你說明理由.

查看答案和解析>>

同步練習(xí)冊答案