【題目】如圖,直線y= x+6分別與x軸、y軸交于A、B兩點(diǎn):直線y= x與AB于點(diǎn)C,與過點(diǎn)A且平行于y軸的直線交于點(diǎn)D.點(diǎn)E從點(diǎn)A出發(fā),以每秒1個(gè)單位的進(jìn)度沿x軸向左運(yùn)動.過點(diǎn)E作x軸的垂線,分別交直線AB、OD于P、Q兩點(diǎn),以PQ為邊向右作正方形PQMN.設(shè)正方形PQMN與△ACD重疊的圖形的周長為L個(gè)單位長度,點(diǎn)E的運(yùn)動時(shí)間為t(秒).
(1)直接寫出點(diǎn)C和點(diǎn)A的坐標(biāo).
(2)若四邊形OBQP為平行四邊形,求t的值.
(3)0<t<5時(shí),求L與t之間的函數(shù)解析式.
【答案】(1),;(2)2;(3).
【解析】
(1)把y= x+6和 y= x聯(lián)立組成方程組,解方程組求得方程組的解,即可得點(diǎn)C的坐標(biāo);在直線y= x+6中,令y=0,求得x的值,即可得點(diǎn)A的坐標(biāo);(2)用t表示出點(diǎn)P、Q的坐標(biāo),求得PQ的長,由條件可知,BO∥QP,若使四邊形OBQP為平行四邊形,必須滿足OB=QP,由此可得,即可求得t值;(3)由題意可知,正方形PQMN與△ACD重疊的圖形是矩形,由此求得L與t之間的函數(shù)解析式即可.
(1)C的坐標(biāo)為( ),A的坐標(biāo)為(8,0);
(2)∵點(diǎn)B直線y= x+6與y軸的交點(diǎn),
∴B(0,6),
∴OB=6,
∵A的坐標(biāo)為(8,0),
∴OA=8,
由題意可得,OE=8-t,
∴P(8-t,),Q(8-t,)
∴=10-2t,
由條件可知,BO∥QP,若使四邊形OBQP為平行四邊形,必須滿足OB=QP,
所以有 ,解得t=2;
(3)當(dāng)0<t<5時(shí), .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一元二次方程ax2+bx+c=0(a≠0)滿足4a-2b+c=0,且有兩個(gè)相等的實(shí)數(shù)根,則( )
A. b=aB. c=2aC. a(x+2)2=0(a≠0)D. a(x-2)2=0(a≠0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面解方程的步驟,在后面的橫線上填寫此步驟的依據(jù):
解:去分母,得.①依據(jù):_________
去括號,得.
移項(xiàng),得.②依據(jù):__________
合并同類項(xiàng),得.
系數(shù)化為1,得.
∴是原方程的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y1=kx+b(k≠0)與反比例函數(shù)y2=(m≠0)相交于A和B兩點(diǎn),且A點(diǎn)坐標(biāo)為(1,3),B點(diǎn)的橫坐標(biāo)為﹣3.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使得y1>y2時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“端午”期間,小明、小亮等同學(xué)隨家長一同到某公園游玩,下面是購買門票時(shí),小明與他爸爸的對話(如圖),試根據(jù)圖中的信息,解答下列問題:
(1)他們共去了幾個(gè)成人,幾個(gè)學(xué)生?
(2)請你幫助算算,小明用更省錢的購票方式是指什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲沿周長為300米的環(huán)形跑道上按逆時(shí)針方向跑步,速度為a米/秒,與此同時(shí)在甲后面100米的乙也沿該環(huán)形跑道按逆時(shí)針方向跑步,速度為3米/秒.設(shè)運(yùn)動時(shí)間為t秒.
(1)若a=5,求甲、乙兩人第1次相遇的時(shí)間;
(2)當(dāng)t=50時(shí),甲、乙兩人第1次相遇.
①求a的值;
②若時(shí),甲、乙兩人第1次相遇前,當(dāng)兩人相距120米時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=的圖象與直線y=﹣x+b都經(jīng)過點(diǎn)A(1,4),且該直線與x軸的交點(diǎn)為B.
(1)求反比例函數(shù)和直線的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校2019學(xué)年舉行席地繪畫大賽.共收到繪畫作品480件,其中的優(yōu)秀作品評出了一、二、三等獎.
占獲獎總數(shù)的幾分之幾 | 獲獎作品的件數(shù) | |
一等獎 | b | |
二等獎 | c | |
三等獎 | a | 96 |
(1)則a= ;b= ;c= ;
(2)學(xué)校決定為獲一等獎同學(xué)每人購買一個(gè)書包,獲得二等獎同學(xué)每人購買一個(gè)文具盒,獲得三等獎同學(xué)每人購買一支鋼筆,并且每位獲獎同學(xué)頒發(fā)一個(gè)證書,已知文具盒單價(jià)是書包單價(jià)的,證書的單價(jià)是文具盒單價(jià)的,鋼筆的單介是文具盒單價(jià)的,學(xué)校購買書包、文具盒、鋼筆共用4000元,那么學(xué)校購買證書共用了多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“元旦”期間,某文具店購進(jìn) 只兩種型號的文具進(jìn)行銷售,其進(jìn)價(jià)和售價(jià)如表:
型號 | 進(jìn)價(jià)(元/只) | 售價(jià)(元/只) |
A型 | 10 | 12 |
B型 | 15 | 23 |
(1)該店用 元可以購進(jìn)A,B兩種型號的文具各多少只?
(2)在()的條件下,若把所購進(jìn)A,B兩種型號的文具全部銷售完,利潤率有沒有超過 ?請你說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com