【題目】從汽車燈的點(diǎn)O處發(fā)出的一束光線經(jīng)燈的反光罩反射后沿CO方向平行射出,如入射光線OA的反射光線為AB,∠OAB=75°.在如圖中所示的截面內(nèi),若入射光線OD經(jīng)反光罩反射后沿DE射出,且∠ODE=22°.則∠AOD的度數(shù)是_____.
【答案】53°或97°
【解析】
分析題目,可知需分兩種情況討論,首先畫出圖形;
可知如果∠AOD是銳角,則∠AOD=∠COA-∠COD,如果∠AOD是鈍角,則∠AOD=∠COA+∠COD;然后由平行線的性質(zhì)求出∠COA,∠COD,從而求出∠AOD的度數(shù).
分析題意,畫出圖形.
∵AB∥CF,
∴∠COA=∠OAB.
∵∠OAB=75°,
∴∠COA=75°.
∵DE∥CF,
∴∠COD=∠ODE.
∵∠ODE=22°,
∴∠COD=22°.
在圖1的情況下,
∠AOD=∠COA-∠COD=75°-22°=53°.
在圖2的情況下,
∠AOD=∠COA+∠COD=75°+22°=97°.
∴∠AOD的度數(shù)為53°或97°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高校共有5個(gè)大餐廳和2個(gè)小餐廳。經(jīng)過測(cè)試:同時(shí)開放1個(gè)大餐廳和2個(gè)小餐廳,可供1680名學(xué)生就餐;同時(shí)開放2個(gè)大餐廳和1個(gè)小餐廳,可供2280名學(xué)生就餐。
(1)1個(gè)大餐廳和1個(gè)小餐廳分別可供多少名學(xué)生就餐?
(2)若7個(gè)餐廳同時(shí)開放,能否供全校的5300名學(xué)生就餐?請(qǐng)說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,兩直角邊OA,OB分別在x軸的負(fù)半軸和y軸的正半軸上,將△AOB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到△A′O′B.若反比例函數(shù) 的圖象恰好經(jīng)過斜邊A′B的中點(diǎn)C,S△ABO=4,tan∠BAO=2,則k的值為( )
A.3
B.4
C.6
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式>x﹣1.
(1)當(dāng)m=1時(shí),求該不等式的解集;
(2)m取何值時(shí),該不等式有解,并求出解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+mx+2m﹣7的圖象經(jīng)過點(diǎn)(1,0).
(1)求拋物線的表達(dá)式;
(2)把﹣4<x<1時(shí)的函數(shù)圖象記為H,求此時(shí)函數(shù)y的取值范圍;
(3)在(2)的條件下,將圖象H在x軸下方的部分沿x軸翻折,圖象H的其余部分保持不變,得到一個(gè)新圖象M.若直線y=x+b與圖象M有三個(gè)公共點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)如圖,將□ABCD沿過點(diǎn)A的直線折疊,使點(diǎn)D落到AB邊上的點(diǎn)處,折痕交CD邊于點(diǎn)E,連接BE
(1)求證:四邊形是平行四邊形
(2)若BE平分∠ABC,求證:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2015隨州)甲騎摩托車從A地去B地,乙開汽車從B地去A地,同時(shí)出發(fā),勻速行駛,各自到達(dá)終點(diǎn)后停止,設(shè)甲、乙兩人間距離為s(單位:千米),甲行駛的時(shí)間為t(單位:小時(shí)),s與t之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:
①出發(fā)1小時(shí)時(shí),甲、乙在途中相遇;
②出發(fā)1.5小時(shí)時(shí),乙比甲多行駛了60千米;
③出發(fā)3小時(shí)時(shí),甲、乙同時(shí)到達(dá)終點(diǎn);
④甲的速度是乙速度的一半.
其中,正確結(jié)論的個(gè)數(shù)是( 。
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程組:①②③④,比較適宜的方法是( )
A.①②用代入法,③④用加減法B.①③用代入法,②④用加減法
C.②③用代入法,①④用加減法D.②④用代入法,①③用加減法
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小蕓設(shè)計(jì)的“作三角形一邊上的高”的尺規(guī)作圖過程.
已知:△ABC.
求作:△ABC的邊BC上的高AD.
作法:①以點(diǎn)A為圓心,適當(dāng)長(zhǎng)為半徑畫弧,
交直線BC于點(diǎn)M,N;
②分別以點(diǎn)M,N為圓心,以大于MN的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)P;
③作直線AP交BC于點(diǎn)D,則線段AD即為所求△ABC的邊BC上的高.
根據(jù)小蕓設(shè)計(jì)的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明:
證明:∵AM= ,MP= ,
∴AP是線段MN的垂直平分線.( )(填推理的依據(jù))
∴AD⊥BC于D,即線段AD為△ABC的邊BC上的高.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com