【題目】如圖,已知點(diǎn)A是以MN為直徑的半圓上一個(gè)三等分點(diǎn),點(diǎn)B是弧的中點(diǎn),點(diǎn)P是半徑ON上的點(diǎn).若⊙O的半徑為l,則AP+BP的最小值為( 。

A. 2B. C. D. 1

【答案】C

【解析】

首先找出點(diǎn)A關(guān)于MN對(duì)稱(chēng)的對(duì)稱(chēng)點(diǎn)A`,AP+BP的最小值就是A`B的長(zhǎng)度.

如圖,作點(diǎn)A關(guān)于MN的對(duì)稱(chēng)點(diǎn)A`,連接BA`交圓于P,則點(diǎn)P即是所求作的點(diǎn),

∵A是半圓上一個(gè)三等分點(diǎn),

∴∠AON=∠A`ON=360°÷2÷3=60°,

又∵點(diǎn)B是弧AN的中點(diǎn),

∴∠BON= ∠AON= ×60°=30°

∴∠A'OB=∠A`ON+∠BON=60°+30°=90°

在Rt△A`OB中,由勾股定理得:

A`B =A`O +BO =1+1=2

得:A`B= ,

所以:AP+BP的最小值是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,ABAC10,BC16.點(diǎn)D在邊BC上,且點(diǎn)D到邊AB和邊AC的距離相等.

1)用直尺和圓規(guī)作出點(diǎn)D(不寫(xiě)作法,保留作圖痕跡,在圖上標(biāo)注出點(diǎn)D);

2)求點(diǎn)D到邊AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三角形ABC中,AB=6,AC=BC=5,以BC為直徑作⊙OAB于點(diǎn)D,交AC于點(diǎn)G,直線(xiàn)DF是⊙O的切線(xiàn),D為切點(diǎn),交CB的延長(zhǎng)線(xiàn)于點(diǎn)E.

(1)求證:DFAC;

(2)求tanE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑的OBC相交于點(diǎn)D,過(guò)點(diǎn)DDEAC于點(diǎn)E

1)求證:DEO切線(xiàn);

2)若tanB=,BC16,求O直徑AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC和DCB中,AB = DC,AC = DB,AC與DB交于點(diǎn)M.

1求證:ABC≌△DCB

2過(guò)點(diǎn)C作CNBD,過(guò)點(diǎn)B作BNAC,CN與BN交于點(diǎn)N,試判斷線(xiàn)段BN與CN的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,點(diǎn)O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點(diǎn)D,E,連接AD.已知∠CAD=∠B

1)求證:AD是⊙O的切線(xiàn);

2)若CD2,AC4,BD6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將繞點(diǎn)B順時(shí)針旋轉(zhuǎn),得到,連接、.

(1)求證:為等邊三角形;

(2),,,求;

(3)已知,點(diǎn)在四邊形內(nèi)部(包括邊界).若點(diǎn)F由點(diǎn)B運(yùn)動(dòng)至點(diǎn)E,其運(yùn)動(dòng)過(guò)程滿(mǎn)足,求點(diǎn)運(yùn)動(dòng)路徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直覺(jué)的誤差:有一張8cm×8cm的正方形紙片,面積是64cm2.把這些紙片按圖1所示剪開(kāi)成四小塊,其中兩塊是三角形,另外兩塊是梯形.把剪出的4個(gè)小塊按圖2所示重新拼合,這樣就得到了一個(gè)13cm×5cm的長(zhǎng)方形,面積是65cm2,面積多了1cm2,這是為什么?

小明給出如下證明:如圖2,可知,tanCEF,tanEAB,∵tanCEFtanEAB,∴∠CEF>∠EAB,∵EFAB,∴∠EAB+AEF180°,∴CEF+AEF180°,因此AE、C三點(diǎn)不共線(xiàn).同理A、G、C三點(diǎn)不共線(xiàn),所以拼合的長(zhǎng)方形內(nèi)部有空隙,故面積多了1cm2

1)小紅給出的證明思路為:以B為原點(diǎn),BC所在的直線(xiàn)為x軸,建立平面直角坐標(biāo)系,證明三點(diǎn)不共線(xiàn).請(qǐng)你幫小紅完成她的證明;

2)將13cmx13cm的正方形按上述方法剪開(kāi)拼合,是否可以拼合成一個(gè)長(zhǎng)方形,但面積少了1cm2?如果能,求出剪開(kāi)的三角形的短邊長(zhǎng);如果不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知拋物線(xiàn)y=ax2+bx+c的圖像經(jīng)過(guò)點(diǎn)A(0,3)、B(1,0),其對(duì)稱(chēng)軸為直線(xiàn)l:x=2,過(guò)點(diǎn)AACx軸交拋物線(xiàn)于點(diǎn)C,AOB的平分線(xiàn)交線(xiàn)段AC于點(diǎn)E,點(diǎn)P是拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),設(shè)其橫坐標(biāo)為m.

(1)求拋物線(xiàn)的解析式;

(2)若動(dòng)點(diǎn)P在直線(xiàn)OE下方的拋物線(xiàn)上,連結(jié)PE、PO,當(dāng)m為何值時(shí),四邊形AOPE面積最大,并求出其最大值;

(3)如圖②,F(xiàn)是拋物線(xiàn)的對(duì)稱(chēng)軸l上的一點(diǎn),在拋物線(xiàn)上是否存在點(diǎn)P使POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案