【題目】如圖,已知點(diǎn)A是以MN為直徑的半圓上一個三等分點(diǎn),點(diǎn)B是弧的中點(diǎn),點(diǎn)P是半徑ON上的點(diǎn).若⊙O的半徑為l,則AP+BP的最小值為( )
A. 2B. C. D. 1
【答案】C
【解析】
首先找出點(diǎn)A關(guān)于MN對稱的對稱點(diǎn)A`,AP+BP的最小值就是A`B的長度.
如圖,作點(diǎn)A關(guān)于MN的對稱點(diǎn)A`,連接BA`交圓于P,則點(diǎn)P即是所求作的點(diǎn),
∵A是半圓上一個三等分點(diǎn),
∴∠AON=∠A`ON=360°÷2÷3=60°,
又∵點(diǎn)B是弧AN的中點(diǎn),
∴∠BON= ∠AON= ×60°=30°
∴∠A'OB=∠A`ON+∠BON=60°+30°=90°
在Rt△A`OB中,由勾股定理得:
A`B =A`O +BO =1+1=2
得:A`B= ,
所以:AP+BP的最小值是
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=10,BC=16.點(diǎn)D在邊BC上,且點(diǎn)D到邊AB和邊AC的距離相等.
(1)用直尺和圓規(guī)作出點(diǎn)D(不寫作法,保留作圖痕跡,在圖上標(biāo)注出點(diǎn)D);
(2)求點(diǎn)D到邊AB的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三角形ABC中,AB=6,AC=BC=5,以BC為直徑作⊙O交AB于點(diǎn)D,交AC于點(diǎn)G,直線DF是⊙O的切線,D為切點(diǎn),交CB的延長線于點(diǎn)E.
(1)求證:DF⊥AC;
(2)求tan∠E的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點(diǎn)D,過點(diǎn)D作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O切線;
(2)若tanB=,BC=16,求⊙O直徑AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DCB中,AB = DC,AC = DB,AC與DB交于點(diǎn)M.
【1】求證:△ABC≌△DCB
【2】過點(diǎn)C作CN∥BD,過點(diǎn)B作BN∥AC,CN與BN交于點(diǎn)N,試判斷線段BN與CN的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,點(diǎn)O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點(diǎn)D,E,連接AD.已知∠CAD=∠B.
(1)求證:AD是⊙O的切線;
(2)若CD=2,AC=4,BD=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將繞點(diǎn)B順時針旋轉(zhuǎn),得到,連接、.
(1)求證:為等邊三角形;
(2)若,,,求;
(3)已知,點(diǎn)在四邊形內(nèi)部(包括邊界).若點(diǎn)F由點(diǎn)B運(yùn)動至點(diǎn)E,其運(yùn)動過程滿足,求點(diǎn)運(yùn)動路徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直覺的誤差:有一張8cm×8cm的正方形紙片,面積是64cm2.把這些紙片按圖1所示剪開成四小塊,其中兩塊是三角形,另外兩塊是梯形.把剪出的4個小塊按圖2所示重新拼合,這樣就得到了一個13cm×5cm的長方形,面積是65cm2,面積多了1cm2,這是為什么?
小明給出如下證明:如圖2,可知,tan∠CEF=,tan∠EAB=,∵tan∠CEF>tan∠EAB,∴∠CEF>∠EAB,∵EF∥AB,∴∠EAB+∠AEF=180°,∴CEF+∠AEF>180°,因此A、E、C三點(diǎn)不共線.同理A、G、C三點(diǎn)不共線,所以拼合的長方形內(nèi)部有空隙,故面積多了1cm2
(1)小紅給出的證明思路為:以B為原點(diǎn),BC所在的直線為x軸,建立平面直角坐標(biāo)系,證明三點(diǎn)不共線.請你幫小紅完成她的證明;
(2)將13cmx13cm的正方形按上述方法剪開拼合,是否可以拼合成一個長方形,但面積少了1cm2?如果能,求出剪開的三角形的短邊長;如果不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點(diǎn)A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點(diǎn)A作AC∥x軸交拋物線于點(diǎn)C,∠AOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是拋物線上的一個動點(diǎn),設(shè)其橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)若動點(diǎn)P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時,四邊形AOPE面積最大,并求出其最大值;
(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P使△POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com