科目: 來源: 題型:
【題目】某縣為落實“精準扶貧惠民政策”,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合作施工15天,那么余下的工程由甲隊單獨完成還需5天.
(1)這項工程的規(guī)定時間是多少天?
(2)為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙兩隊合作完成.則甲、乙兩隊合作完成該工程需要多少天?
查看答案和解析>>
科目: 來源: 題型:
【題目】為更好地踐行社會主義核心價值觀,讓同學們珍惜糧食,學會感恩.校學生會積極倡導“光盤行動”,某天午餐后學生會干部隨機調(diào)查了部分同學就餐飯菜的剩余情況,并將結果統(tǒng)計后制成如圖所示的不完整的統(tǒng)計圖.
(1)這次被調(diào)查的同學共有________名;
(2)計算在扇形統(tǒng)計圖中剩大量飯菜所對應扇形圓心角的度數(shù);
(3)校學生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學生一餐浪費的食物可以提供40人用餐.據(jù)此估算,全校2000名學生一餐浪費的食物可供多少人食用一餐?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,
(1)請用尺規(guī)作圖法,作∠B的平分線,交AD于點E;(不要求寫作法,保留作圖痕跡)
(2) 若平行四邊形ABCD的周長為10,CD=2,求DE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,已知△ABC與△DEF均為等邊三角形,且AB=2,DB=1,現(xiàn)△ABC靜止不動,△DEF沿著直線EC以每秒1個單位的速度向右移動設△DEF移動的時間為x,△DEF與△ABC重合的面積為y,則能大致反映y與x函數(shù)關系的圖象是( 。
A.B.
C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,二次函數(shù)的圖像與軸交于點,(在左側),與軸正半軸交于點,點在拋物線上,軸,且.
(1)求點,的坐標及的值;
(2)點為軸右側拋物線上一點.
①如圖①,若平分,交于點,求點的坐標;
②如圖②,拋物線上一點的橫坐標為2,直線交軸于點,過點作直線的垂線,垂足為,若,求點的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,中,,點從點出發(fā)沿方向勻速運動,速度為1點是上位于點右側的動點,點是上的動點,在運動過程中始終保持,cm.過作交于,當點與點重合時點停止運動.設的而積為,點的運動時問為,與的函數(shù)關系如圖②所示:
(1)=_______,=_______;
(2)設四邊形的面積為,求的最大值;
(3)是否存在的值,使得以,,為頂點的三角形與相似?如果存在,求的值;如果不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形的頂點,在軸的正半軸上,頂點在直線位于第一象限的圖像上,反比例函數(shù)的圖像經(jīng)過點,交于點,.
(1)如果,求點的坐標;
(2)連接,當時,求點的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司銷售甲、乙兩種品牌的投影儀,這兩種投影儀的進價和售價如下表所示:
甲 | 乙 | |
進價(元/套) | 3000 | 2400 |
售價(元/套) | 3300 | 2800 |
該公司計劃購進兩種投影儀若干套,共需66000元,全部銷售后可獲毛利潤9000元.
(1)該公司計劃購進甲、乙兩種品牌的投影儀各多少套?
(2)通過市場調(diào)研,該公司決定在原計劃的基礎上,減少甲種投影儀的購進數(shù)量,增加乙種投影儀的購進數(shù)量,已知乙種投影儀增加的數(shù)量是甲種投影儀減少的數(shù)量的2倍。若用于購進這兩種投影儀的總資金不超過75000元,問甲種投影儀購進數(shù)量至多減少多少套?
查看答案和解析>>
科目: 來源: 題型:
【題目】初三(1)班針對“垃圾分類”知曉情況對全班學生進行專題調(diào)查活動,對“垃圾分類”的知曉情況分為、、、四類.其中,類表示“非常了解”,類表示“比較了解”,類表示“基本了解”,類表示“不太了解”,每名學生可根據(jù)自己的情況任選其中一類,班長根據(jù)調(diào)查結果進行了統(tǒng)計,并繪制成了不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
“垃圾分類”知曉情況各類別人數(shù)條形統(tǒng)計圖 “垃圾分類”知曉情況各類別人數(shù)扇形統(tǒng)計圖
根據(jù)以上信息解決下列問題:
(1)初三(1)班參加這次調(diào)查的學生有______人,扇形統(tǒng)計圖中類別所對應扇形的圓心角度數(shù)為______°;
(2)求出類別的學生數(shù),并補全條形統(tǒng)計圖;
(3)類別的4名學生中有2名男生和2名女生,現(xiàn)從這4名學生中隨機選取2名學生參加學校“垃圾分類”知識競賽,請用列舉法(畫樹狀圖或列表)求所選取的2名學生中恰好有1名男生、1名女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com