科目: 來(lái)源: 題型:
【題目】如圖,等邊中,AB=6,點(diǎn)D在BC上,BD=4,點(diǎn)E為邊AC上一動(dòng)點(diǎn)(不與點(diǎn)C重合),關(guān)于DE的軸對(duì)稱(chēng)圖形為.
(1)當(dāng)點(diǎn)F在AC上時(shí),求證:DF//AB;
(2)設(shè)的面積為S1,的面積為S2,記S=S1-S2,S是否存在最大值?若存在,求出S的最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)B,F,E三點(diǎn)共線時(shí)。求AE的長(zhǎng)。
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,⊙O的直徑AB=10,弦AC=8,連接BC。
(1)尺規(guī)作圖:作弦CD,使CD=BC(點(diǎn)D不與B重合),連接AD;(保留作圖痕跡,不寫(xiě)作法)
(2)在(1)所作的圖中,求四邊形ABCD的周長(zhǎng)。
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形ABCD的對(duì)角線AC與BD交于點(diǎn)P(-1,2),AB⊥x軸于點(diǎn)E,正比例函數(shù)y=mx的圖像與反比例函數(shù)的圖像相交于A,P兩點(diǎn)。
(1)求m,n的值與點(diǎn)A的坐標(biāo);
(2)求證:∽
(3)求的值
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】隨著粵港澳大灣區(qū)建設(shè)的加速推進(jìn),廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產(chǎn)業(yè),據(jù)統(tǒng)計(jì),目前廣東5G基站的數(shù)量約1.5萬(wàn)座,計(jì)劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達(dá)到17.34萬(wàn)座。
(1)計(jì)劃到2020年底,全省5G基站的數(shù)量是多少萬(wàn)座?;
(2)按照計(jì)劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長(zhǎng)率。
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某中學(xué)抽取了40名學(xué)生參加“平均每周課外閱讀時(shí)間”的調(diào)查,由調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.
組別 | 時(shí)間/小時(shí) | 頻數(shù)/人數(shù) |
A組 | 2 | |
B組 | m | |
C組 | 10 | |
D組 | 12 | |
E組 | 7 | |
F組 | 4 |
頻數(shù)分布表
請(qǐng)根據(jù)圖表中的信息解答下列問(wèn)題:
(1)求頻數(shù)分布表中m的值;
(2)求B組,C組在扇形統(tǒng)計(jì)圖中分別對(duì)應(yīng)扇形的圓心角度數(shù),并補(bǔ)全扇形統(tǒng)計(jì)圖;
(3)已知F組的學(xué)生中,只有1名男生,其余都是女生,用列舉法求以下事件的概率:從F組中隨機(jī)選取2名學(xué)生,恰好都是女生。
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為a,點(diǎn)E在邊AB上運(yùn)動(dòng)(不與點(diǎn)A,B重合),∠DAM=45°,點(diǎn)F在射線AM上,且,CF與AD相交于點(diǎn)G,連接EC,EF,EG,則下列結(jié)論:①∠ECF=45°;②的周長(zhǎng)為;③ ;④的面積的最大值.其中正確的結(jié)論是____.(填寫(xiě)所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,對(duì)角線AC的垂直平分線EF分別交BC,AD于點(diǎn)E,F,若BE=3,AF=5,則AC的長(zhǎng)為( )
A. B. C. 10D. 8
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=2,AD=4,對(duì)角線AC,BD相交于點(diǎn)O,且E,F,G,H分別是AO,BO,CO,DO的中點(diǎn),則下列說(shuō)法正確的是( )
A.EH=HGB.四邊形EFGH是平行四邊形
C.AC⊥BDD.的面積是的面積的2倍
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】閱讀下列材料,解答問(wèn)題:
為解方程,我們可以將視為一個(gè)整體,然后設(shè),則,原方程可化為,解此方程得.當(dāng)時(shí),,∴;當(dāng)時(shí),,∴,∴原方程的解為.
(1)填空:在原方程得到方程(*)的過(guò)程中,利用________法達(dá)到了降次的目的,體現(xiàn)了________的數(shù)學(xué)思想;
(2)解方程:
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】實(shí)踐操作在數(shù)學(xué)活動(dòng)中,林老師按如下的步驟進(jìn)行操作:如圖 (a),①在△A OB內(nèi)畫(huà)任意等邊三角形CDE,使點(diǎn)C在OA上,點(diǎn)D在OB上;②連接OE并延長(zhǎng),交AB于點(diǎn)E′,過(guò)點(diǎn)E′作C′E′∥CE,交OA于點(diǎn)C′,作D′E′∥DE,交OB于點(diǎn)D′,連接C′D′.林老師告訴同學(xué)們△C′D′E′是△AOB的內(nèi)接等邊三角形.
(1)請(qǐng)證明林老師的結(jié)論;
(2)仿照林老師的操作步驟,請(qǐng)?jiān)趫D(b)中作出內(nèi)接正方形CDEF,要求DE在OB上,點(diǎn)C,F分別在OA,AB邊上.(不需要寫(xiě)作圖過(guò)程,畫(huà)出圖形即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com