18.已知函數(shù) $f(x)=\frac{1}{3}{x^3}-{x^2}$.求函數(shù)f(x)的單調(diào)區(qū)間和極值.

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值.

解答 解:∵$f(x)=\frac{1}{3}{x^3}-{x^2}$,∴f′(x)=x2-2x=x(x-2),
令f′(x)>0,解得:x>2或x<0,令f′(x)<0,解得:0<x<2,
∴f(x)的單調(diào)增區(qū)間是(-∞,0)與(2,+∞),單調(diào)減區(qū)間是(0,2),
∴當(dāng)x=0時(shí)f(x)取極大值0,當(dāng)x=2時(shí)f(x)取極小值$-\frac{4}{3}$.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}+5x+6$在區(qū)間[1,3]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是(-∞,-3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,則函數(shù)f(x)的圖象只可能是下列各選項(xiàng)中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)$f(x)=\frac{lnx}{x}$
(1)求f(x)的單調(diào)區(qū)間與極值;
(2)比較1.712.71與2.711.71的大小,并說明理由
(3)證明當(dāng)x∈(0,2)時(shí),$f({x+1})<\frac{9x}{{{x^2}+7x+6}}+\frac{1}{x+1}-\frac{1}{{\sqrt{x+1}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖是函數(shù)f(x)=x3+bx2+cx+d的大致圖象,則$x_1^{\;}+x_2^{\;}$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}:$\frac{1}{1}$,$\frac{1}{1+2}$,$\frac{1}{1+2+3}$,…$\frac{1}{1+2+3+…n}$,…,求它的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)P是雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$上一點(diǎn),M,N分別是兩圓:(x-5)2+y2=4和(x+5)2+y2=1上的點(diǎn),則|PM|-|PN|的最大值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,若$a=1,b=\sqrt{2}$,角B是角A和角C的等差中項(xiàng),則sinA=$\frac{{\sqrt{6}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ln(x+a)-x,a∈R.
(1)當(dāng)a=-1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若x≥1時(shí),不等式ef(x)+$\frac{a}{2}$x2>1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案