3.若關于x的不等式x2-4x≥m對x∈[3,4)恒成立,則(  )
A.m≥-3B.-3≤m<0C.m≤-3D.m≥-4

分析 由題意,只要m≤x2-4x的最小值即可.

解答 解:因為x2-4x=(x-2)2-4,又x∈[3,4),所以x=3時,x2-4x的最小值為9-12=-3,所以m≤-3;
故選C.

點評 本題考查了不等式恒成立問題,轉化為參數(shù)m小于等于函數(shù)的最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知α,β∈(0,π),并且sin(5π-α)=$\sqrt{2}$cos(${\frac{7}{2}$π+β),$\sqrt{3}$cos(-α)=-$\sqrt{2}$cos(π+β),求α,β的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.歐巴老師布置給時鎮(zhèn)同學這樣一份數(shù)學作業(yè):在同一個直角坐標系中畫出四個對數(shù)函數(shù)的圖象,使它們的底數(shù)分別為$\sqrt{3}$、$\frac{1}{10}$、e和$\frac{3}{5}$.時鎮(zhèn)同學為了和暮煙同學出去玩,問大英同學借了作業(yè)本很快就抄好了,詳見如圖.第二天,歐巴老師當堂質問時鎮(zhèn)同學:“你畫的四條曲線中,哪條是底數(shù)為e的對數(shù)函數(shù)圖象?”時鎮(zhèn)同學無言以對,憋得滿臉通紅.眼看時鎮(zhèn)同學就要被歐巴老師訓斥一番,聰明睿智的你能不能幫他一把,回答這個問題呢?
曲線C1才是底數(shù)為e的對數(shù)函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在一次反恐演習中,我方三架武裝直升機分別從不同方位對同一目標發(fā)動攻擊(各發(fā)射一枚導彈),由于天氣原因,三枚導彈命中目標的概率分別為0.9,0.9,0.8,若至少有兩枚導彈命中目標方可將其摧毀,則目標被摧毀的概率為0.954.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在平面直角坐標系xOy中,若焦點在x軸的橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{4}$=1的離心率為$\frac{1}{2}$,則m=$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.“?x∈R,x2+ax+1≥0成立”是“|a|≤1”的( 。
A.充分必要條件B.必要而不充分條件
C.充分而不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.曲線y=-x3+3x2在點(2,4)處的切線方程為(  )
A.x=4B.y=4C.x=2D.y=2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.過雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點且垂直于x軸的直線與雙曲線交于A、B兩點,與雙曲線的漸近線交于C、D兩點,若|AB|=$\frac{3}{5}$|CD|,則雙曲線的離心率為( 。
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.當z=-$\frac{1-i}{{\sqrt{2}}}$時,z100+z50+1的值等于( 。
A.1B.-1C.iD.-i

查看答案和解析>>

同步練習冊答案