16.某幾何體由圓柱挖掉半個球和一個圓錐所得,三視圖中的正視圖和側(cè)視圖如圖所示,求該幾何體的體積.

分析 由正視圖與側(cè)視圖可知:圓柱的底面直徑為6,高為7,球的直徑為6,圓錐的底面直徑為6,高為4.

解答 解:由正視圖與側(cè)視圖可知:圓柱的底面直徑為6,高為7,球的直徑為6,圓錐的底面直徑為6,高為4.
可得該幾何體的體積V=π×32×7-$\frac{1}{2}×\frac{4}{3}π×{3}^{3}$-$\frac{1}{3}×π×{3}^{2}×4$=33π.

點評 本題考查了圓柱、圓錐、球的三視圖、體積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.y=$\sqrt{\frac{x-1}{2x}}$-log2(4-x2)的定義域是(-2,0)∪[1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p和命題q中有且僅有一個真命題,則下列命題中一定為假命題的是(  )
A.p∨qB.¬p∨qC.¬p∧¬qD.p∨¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在數(shù)列{an}中,a1=2,an+1=1-an(n∈N*),Sn為數(shù)列的前n項和,則S2015-2S2016+S2017的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知A(-1,-1),過拋物線C:y2=4x上任意一點M作MN垂直于準(zhǔn)線于N點,則|MN|+|MA|的最小值為( 。
A.5B.$\sqrt{10}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.拋物線y2=2x的焦點到直線x-$\sqrt{3}$y=0的距離是(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{4}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>b>0)的一條漸近線與橢圓$\frac{x^2}{5}$+y2=1交于P.Q兩點.F為橢圓右焦點,且PF⊥QF,則雙曲線的離心率為(  )
A.$\frac{4}{15}\sqrt{15}$B.$\frac{4}{5}\sqrt{5}$C.$\sqrt{3}-1$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)的定義域為R,若存在常數(shù)m>0,使|f(x)|≤m|x|對一切實數(shù)x均成立,則稱f(x)為F函數(shù).給出下列函數(shù):①f(x)=0;②f(x)=2x;③f(x)=$\sqrt{2}$(sinx+cosx); ④f(x)=$\frac{x}{{x}^{2}+x+1}$;你認(rèn)為上述四個函數(shù)中,哪幾個是F函數(shù),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列四組函數(shù)中,有相同圖象的一組是( 。
A.f(x)=x,$g(x)=\sqrt{x{\;}^2}$B.f(x)=x,$g(x)=\root{3}{x^3}$
C.f(x)=sinx,g(x)=sin(π+x)D.f(x)=x,g(x)=elnx

查看答案和解析>>

同步練習(xí)冊答案