分析 如圖所示,建立空間直角坐標(biāo)系.不妨設(shè)棱長(zhǎng)AB=2.設(shè)M(x,0,2),x∈[0,2].可得:cos$<\overrightarrow{DF},\overrightarrow{ME}>$=$\frac{\overrightarrow{DF}•\overrightarrow{EM}}{|\overrightarrow{DF}||\overrightarrow{EM}|}$.sinθ=$\sqrt{1-co{s}^{2}<\overrightarrow{DF},\overrightarrow{ME}>}$,利用函數(shù)的單調(diào)性即可得出.
解答 解:如圖所示,建立空間直角坐標(biāo)系.
不妨設(shè)棱長(zhǎng)AB=2.則D(2,0,0),E(2,1,0),
F(1,2,0),設(shè)M(x,0,2),x∈[0,2].
$\overrightarrow{DF}$=(-1,2,0),$\overrightarrow{ME}$=(2-x,1,-2),
∴cos$<\overrightarrow{DF},\overrightarrow{ME}>$=$\frac{\overrightarrow{DF}•\overrightarrow{EM}}{|\overrightarrow{DF}||\overrightarrow{EM}|}$=$\frac{x}{\sqrt{5}×\sqrt{5+(2-x)^{2}}}$.
x≠0時(shí),sinθ=$\sqrt{1-\frac{{x}^{2}}{{5(x}^{2}-4x+9)}}$=$\sqrt{1-\frac{1}{5[(\frac{3}{x}-\frac{2}{3})^{2}+\frac{5}{9}]}}$≥$\frac{\sqrt{21}}{5}$,當(dāng)x=2時(shí)取等號(hào);x=0時(shí),sinθ=1.
綜上可得:sinθ的最小值為$\frac{\sqrt{21}}{5}$.
故答案為:$\frac{\sqrt{21}}{5}$.
點(diǎn)評(píng) 本題考查了利用向量的夾角公式求異面直線的夾角、數(shù)量積運(yùn)算性質(zhì)、函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 等腰三角形 | B. | 直角三角形 | ||
C. | 等腰三角形或直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1+$\sqrt{2}$+$\sqrt{3}$ | B. | 2+$\sqrt{2}$+$\sqrt{3}$ | C. | 3+$\sqrt{2}$+$\sqrt{3}$ | D. | 4+$\sqrt{2}$+$\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com