10.若a<1,b>1,那么下列命題中正確的是( 。
A.$\frac{1}{a}>\frac{1}$B.$\frac{a}>1$C.a2<b2D.ab<a+b-1

分析 利用特值代入法,逐一分析四個(gè)答案的真假,可得答案.

解答 解:∵a<1,b>1,
令a=-2,b=2,$\frac{1}{a}<\frac{1}$,故A錯(cuò)誤;
令a=-2,b=2,$\frac{a}=-1<1$,故B錯(cuò)誤;
令a=-2,b=2,a2=b2,故C錯(cuò)誤;
(a-1)(b-1)<0,即ab-a-b+1<0,即ab<a+b-1,故D正確,
故選:D

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了不等式的基本性質(zhì),難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.有一旗桿高12米,它的頂端掛一條長(zhǎng)13米的繩子,拉緊繩子,并把它的下端先后放在地面上的兩點(diǎn)(和旗桿底端不在同一條直線上),已知兩點(diǎn)與旗桿底端的距離都是5米.求證:該旗桿與地面垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知正三棱柱ABC-A1B1C1的體積為$\frac{{9\sqrt{3}}}{4}$,底面邊長(zhǎng)為3,若O為底面A1B1C1的中心,則OA與平面ABC所成角的大小為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,邊長(zhǎng)為2的正方形ABCD中,點(diǎn)E是AB的中點(diǎn),點(diǎn)F是BC的中點(diǎn),將△AED,△CFD,△BEF分別沿DE、DF、EF折起,使A、B、C三點(diǎn)重合于點(diǎn)A′.
(1)求三棱錐A′-EFD的體積;
(2)求直線A′D與平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在平行四邊形ABCD中,AB⊥BD,AB=1,BD=$\sqrt{2}$,若將其沿BD折成直二面角A-BD-C,則三棱錐A-BDC的外接球的表面積為( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一艘向正東航行的船,看見正北方向有兩個(gè)相距10海里的燈塔恰好與它在一條直線上,繼續(xù)航行半小時(shí)后,看見一燈塔在船的北偏西30°,另一燈塔在船的北偏西15°,則這艘船的速度是每小時(shí)( 。
A.5海里B.$5\sqrt{3}$海里C.10海里D.$10\sqrt{3}$海里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在平面直角坐標(biāo)系xOy中,已知R(x0,y0)是橢圓C:$\frac{x^2}{24}+\frac{y^2}{12}$=1上的一點(diǎn),從原點(diǎn)O向圓R:(x-x02+(y-y02=8作兩條切線,分別交橢圓于點(diǎn)P,Q.
(1)若R點(diǎn)在第一象限,且直線OP,OQ互相垂直,求圓R的方程;
(2)若直線OP,OQ的斜率存在,并記為k1,k2,求k1•k2的值;
(3)試問OP2+OQ2是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某校為了解學(xué)生一次考試后數(shù)學(xué)、物理兩個(gè)科目的成績(jī)情況,從中隨機(jī)抽取了25位考生的成績(jī)進(jìn)行統(tǒng)計(jì)分析.25位考生的數(shù)學(xué)成績(jī)已經(jīng)統(tǒng)計(jì)在莖葉圖中,物理成績(jī)?nèi)缦拢?br />90    71    64     66   72   39    49   46    55    56   85    52    6l
80    66    67    78    70   51    65   42    73    77   58     67

(1)請(qǐng)根據(jù)數(shù)據(jù)在答題卡的莖葉圖中完成物理成績(jī)統(tǒng)計(jì);
( 2)請(qǐng)根據(jù)數(shù)據(jù)在答題卡上完成數(shù)學(xué)成績(jī)的頻數(shù)分布表及數(shù)學(xué)成績(jī)的頻率分布直方圖;
數(shù)學(xué)成績(jī)的頻數(shù)分布表
數(shù)學(xué)成績(jī)分組[50,60)[60,70)[70,80)[80,90)[90,100)[100,110)[110,120]
頻數(shù)1237651
(3)設(shè)上述樣本中第i位考生的數(shù)學(xué)、物理成績(jī)分別為xi,yi(i=1,2,3,…,25).通過對(duì)樣本數(shù)據(jù)進(jìn)行初步處理發(fā)現(xiàn):數(shù)學(xué)、物理成績(jī)具有線性相關(guān)關(guān)系,得到:
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}{x}_{i}$=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85
求y關(guān)于x的線性回歸方程,并據(jù)此預(yù)測(cè)當(dāng)某考生的數(shù)學(xué)成績(jī)?yōu)?00分時(shí),該考生的物理成績(jī)(精確到1分).附:回歸直線方程的斜率和截距的最小二乘估計(jì)公式分別為:
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=-x3+3x2+9x+1.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)求f(x)在點(diǎn)(-2,f(-2))處的切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案