18.(1)已知f(x+1)=x2+4x+1,求f(x)的解析式.
(2)已知f(x)是一次函數(shù),且滿(mǎn)足3f(x+1)-f(x)=2x+9.求f(x).
(3)已知f(x)滿(mǎn)足2f(x)+f($\frac{1}{x}$)=3x,求f(x).

分析 (1)方法一:(換元法),方法二:(配湊法),
(2)待定系數(shù)法.
(3)構(gòu)造方程組法.

解答 解:(1)方法一:(換元法)設(shè)x+1=t,則x=t-1,
∴f(t)=(t-1)2+4(t-1)+1,即f(t)=t2+2t-2.
∴所求函數(shù)為f(x)=x2+2x-2.
方法二:(配湊法)f(x+1)=x2+4x+1=(x+1)2+2(x+1)-2
∴所求函數(shù)為f(x)=x2+2x-2.
(2)(待定系數(shù)法)由題意,設(shè)函數(shù)為f(x)=ax+b(a≠0)
∵3f(x+1)-f(x)=2x+9,
∴3a(x+1)+3b-ax-b=2x+9,
即2ax+3a+2b=2x+9,
由恒等式性質(zhì),得$\left\{\begin{array}{l}{2a=2}\\{3a+2b=9}\end{array}\right.$
∴a=1,b=3.
∴所求函數(shù)解析式為f(x)=x+3.
(3)2f(x)+f($\frac{1}{x}$)=3x①
將①中x換成$\frac{1}{x}$,得2f($\frac{1}{x}$)+f(x)=$\frac{3}{x}$②
①×2-②得3f(x)=6x-$\frac{3}{x}$.
∴f(x)=2x-$\frac{1}{x}$.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)解析式的求解及常用方法,熟練掌握換元法,配湊法,待定系數(shù)法,方程組法求解析式的格式和步驟是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知全集U=R,集合A={x|2x2-3x-2=0},集合B={x|x>1},則A∩(∁UB)=( 。
A.{2}B.{x|x≤1}C.{-$\frac{1}{2}$}D.{x|x≤1或x=2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在正四面體P-ABC中,D、E、F分別是AB、BC、CA的中點(diǎn),下面四個(gè)結(jié)論中不成立的是②.
①BC∥面PDF;
②面PDF⊥面ABC;
③DF⊥面PAE;
④面PAE⊥面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=lnx+x2-ax.
(Ⅰ)當(dāng)a=3時(shí),求函數(shù)f(x)的極值;
(Ⅱ)若函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,若f(x)≤$\frac{1}{2}$(3x2+$\frac{1}{x^2}$-6x)在x∈(0,1]內(nèi)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列各組函數(shù)中,是相等函數(shù)的是( 。
A.y=$\root{5}{{x}^{5}}$與y=$\sqrt{{x}^{2}}$B.f(x)=x2-2x-1與g(t)=t2-2t-1(t∈z)
C.f(x)=$\frac{{x}^{2}-4}{x-2}$與g(x)=x+2D.y=x0與g(x)=$\frac{1}{{x}^{0}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.用一個(gè)平面截半徑為25cm的球,截面面積是225πcm2,則球心到截面的距離是( 。
A.5cmB.10cmC.15cmD.20cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.甲將要參加某決賽,賽前A,B,C,D四位同學(xué)對(duì)冠軍得主進(jìn)行競(jìng)猜,每人選擇一名選手,已知A,B選擇甲的概率均為m,C,D選擇甲的概率均為n(m>n),且四人同時(shí)選擇甲的概率為$\frac{9}{100}$,四人均未選擇甲的概率為$\frac{1}{25}$.
(1)求m,n的值;
(2)設(shè)四位同學(xué)中選擇甲的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-\frac{9}{4}(x>0)}\\{{3}^{x}(x≤0)}\end{array}\right.$,則f[f($\frac{1}{4}$)]的值是( 。
A.$\frac{1}{9}$B.9C.-$\frac{1}{9}$D.-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在四棱錐V-ABCD中,VD⊥平面ABCD,VD=DC=BC=2,AB=4,
AB∥CD,BC⊥CD.
(1)求證:BC⊥VC;
(2)求點(diǎn)A到平面VBC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案