14.某射手射擊1次,擊中目標(biāo)的概率是0.8,他連續(xù)射擊4次,有各次射擊是否擊中目標(biāo)相互之間沒有影響.有下列結(jié)論:
(1)第二次擊中目標(biāo)的概率是0.8;
(2)恰好擊中目標(biāo)三次的概率是0.83×0.2;
(3)至少擊中目標(biāo)一次的概率是1-0.24;
其中正確的結(jié)論的序號是①③ (寫出所有正確結(jié)論的序號)

分析 由題意知射擊一次擊中目標(biāo)的概率是0.8,得到第3次擊中目標(biāo)的概率是0.8,連續(xù)射擊4次,且各次射擊是否擊中目標(biāo)相互之間沒有影響,得到是一個獨立重復(fù)試驗,根據(jù)獨立重復(fù)試驗的公式得到恰好擊中目標(biāo)3次的概率和至少擊中目標(biāo)1次的概率.

解答 解:∵射擊一次擊中目標(biāo)的概率是0.8,
∴第2次擊中目標(biāo)的概率是0.8,
∴①正確,
∵連續(xù)射擊4次,且各次射擊是否擊中目標(biāo)相互之間沒有影響,
∴本題是一個獨立重復(fù)試驗,
根據(jù)獨立重復(fù)試驗的公式得到恰好擊中目標(biāo)3次的概率是C43×0.83×0.2
∴②不正確,
∵至少擊中目標(biāo)1次的概率用對立事件表示是1-0.24
∴③正確,
故答案為:①③.

點評 本題主要考查n次獨立重復(fù)試驗中恰好發(fā)生k次的概率,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.對于0≤m≤4中的任意m,不等式x2+mx>4x+m-3恒成立,則x的取值范圍是(  )
A.-1≤x≤3B.x≤-1C.x≥3D.x<-1或x>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若某空間幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.20-2πB.40-$\frac{2}{3}$πC.20-$\frac{2}{3}$πD.20-$\frac{4}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.函數(shù)f(x)=x2-mlnx-nx.
(1)當(dāng)m=-1時,函數(shù)f(x)在定義域內(nèi)是增函數(shù),求實數(shù)n的取值范圍;
(2)當(dāng)m>0,n=0時,關(guān)于x的方程f(x)=mx有唯一解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列結(jié)論判斷正確的是( 。
A.任意兩條直線確定一個平面
B.三條平行直線最多確定三個平面
C.棱長為1的正方體的內(nèi)切球的表面積為4π
D.若平面α⊥平面β,平面β⊥平面γ,則平面α∥平面γ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.奇函數(shù)f(x)的定義域為(-1,1),且在(-1,1)上是增函數(shù),若f(1-a)+f(1-2a)<0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)上任意一點A(x1,y1)處的切線l1,在其圖象上總存在異與點A的點B(x2,y2),使得在B點處的切線l2滿足l1∥l2,則稱函數(shù)具有“自平行性”.下列有關(guān)函數(shù)f(x)的命題:
①函數(shù)f(x)=sinx+1具有“自平行性”;
②函數(shù)f(x)=x3(-1≤x≤2)具有“自平行性”;
③函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x}-1(x<0)}\\{x+\frac{1}{x}(x>m)}\end{array}\right.$具有“自平行性”的充要條件為實數(shù)m=1;
④奇函數(shù)y=f(x)(x≠0)不一定具有“自平行性”;
⑤偶函數(shù)y=f(x)具有“自平行性”.
其中所有敘述正確的命題的序號是( 。
A.①③④B.①④⑤C.②③④D.①②⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若經(jīng)過(a,-3)和(1,2)兩點的直線的傾斜角為135°,則a的值為(  )
A.-6B.6C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.計算:Cn0+2Cn1+22Cn2+…+2nCnn=3n

查看答案和解析>>

同步練習(xí)冊答案