8.已知長方體ABCD-A1B1C1D1中,AB=2,BC=BB1=$\sqrt{2}$,在長方體的外接球內(nèi)隨機(jī)取一點(diǎn)M,則落在長方體外的概率為( 。
A.$\frac{3\sqrt{2}}{4π}$B.$\frac{4π-3\sqrt{2}}{4π}$C.$\frac{1}{2π}$D.$\frac{2π-1}{2π}$

分析 求出長方體的體積,長方體的外接球的體積,即可求出在長方體的外接球內(nèi)隨機(jī)取一點(diǎn)M,落在長方體外的概率.

解答 解:由題意,長方體的體積為2×$\sqrt{2}×\sqrt{2}$=4,
長方體的外接球的直徑為$\sqrt{4+2+2}$=2$\sqrt{2}$,體積為$\frac{4}{3}π•(\sqrt{2})^{3}$=$\frac{8\sqrt{2}π}{3}$,
∴在長方體的外接球內(nèi)隨機(jī)取一點(diǎn)M,則落在長方體外的概率為$\frac{\frac{8\sqrt{2}}{3}π-4}{\frac{8\sqrt{2}}{3}π}$=$\frac{4π-3\sqrt{2}}{4π}$,
故選:B.

點(diǎn)評 本題考查幾何概型的概率計(jì)算,關(guān)鍵是確定滿足條件的區(qū)域,利用體積比值求解,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.求y=$\sqrt{1+x}$+2$\sqrt{1-x}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}的前n項(xiàng)和為Sn,S1=2,Sn=6,且Sn-Sn-2=3n(n≥3),則數(shù)列{an}的通項(xiàng)公式an=$\left\{\begin{array}{l}\frac{3n}{2}+\frac{1}{2},n為奇數(shù)\\ \frac{3n}{2}+1,n為偶數(shù)\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)a,b,c為三角形ABC三邊長,a≠1,b<c,若$\sqrt{3}$sinA+cosA=$\sqrt{2}$,且$\frac{1}{lo{g}_{c-b}a}$+$\frac{1}{lo{g}_{c+b}a}$=2,則B角大小為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如表資料:
日期12月1日12月2日12月3日12月4日12月5日
溫差x/℃101113128
發(fā)芽數(shù)y/顆2325302616
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的2組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并判斷該線性回歸方程是否可靠(若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的);
參數(shù)公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若直線l:y=k(x-$\sqrt{2}$)與曲線x2-y2=1(x>0)相交于A、B兩點(diǎn),則直線l的傾斜角的取值范圍是($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)y=f(x)的一個(gè)減區(qū)間是(2,6),則可以斷定函數(shù)y=f(2-x)的( 。
A.一個(gè)減區(qū)間是(4,8)B.一個(gè)減區(qū)間是(0,4)
C.一個(gè)增區(qū)間是(-4,0)D.一個(gè)增區(qū)間是(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在相同的條件下,對某種油菜籽進(jìn)行發(fā)芽試驗(yàn),結(jié)果如表:
                    每批試驗(yàn)菜籽數(shù)(n) 2 5 1070  130 310700 1500 2000 3000
 發(fā)芽菜籽數(shù)(m) 2 4 960  116 282 639 11391806 2715 
 發(fā)芽頻率($\frac{m}{n}$)         
(1)計(jì)算表中菜籽發(fā)芽的各個(gè)頻率;(保留三效有效數(shù)字)
(2)從這種油菜籽中任取一粒,它發(fā)芽的概率約是多少?(保留一位有效數(shù)字)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若復(fù)數(shù)z=x+yi(x,y∈R)滿足|z|≤1,則|z-2i|的取值范圍是[1,3],|2x+y-4|+|6-x-3y|的最大值是15.

查看答案和解析>>

同步練習(xí)冊答案