18.如圖是某正方體被一平面截去一部分后剩下的幾何體的三視圖,則該幾何體的體積為$\frac{20}{3}$.

分析 作出幾何體的直觀圖,觀察截去幾何體的結(jié)構(gòu)特征,代入數(shù)據(jù)計(jì)算.

解答 解:由三視圖可知正方體邊長為2,截去部分為三棱錐,作出幾何體的直觀圖如圖所示:

故該幾何體的體積為:23-$\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{20}{3}$,
故答案為:$\frac{20}{3}$.

點(diǎn)評 本題考查的知識點(diǎn)是由三視圖,求體積和表面積,根據(jù)已知的三視圖,判斷幾何體的形狀是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在復(fù)平面上,平行四邊形OABC的3個(gè)頂點(diǎn)O,A,C對應(yīng)的復(fù)數(shù)分別為0,4-3i,1+2i.求頂點(diǎn)B對應(yīng)的復(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義在R上的奇函數(shù)f(x),其導(dǎo)函數(shù)為f′(x);當(dāng)x∈(0,+∞)時(shí),都有2f(x)+xf′(x)<$\frac{1}{x}$,則不等式x2f(x)-2f($\sqrt{2}$)<x-$\sqrt{2}$的解集為( 。
A.($\sqrt{2}$,+∞)B.(-∞,$\sqrt{2}$)C.(-$\sqrt{2}$,$\sqrt{2}$)D.(0,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$12+4\sqrt{2}$B.$16+4\sqrt{2}$C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖是一個(gè)簡單組合體的三視圖,想象它表示的組合體的結(jié)構(gòu)特征,并嘗試畫出它的示意圖(尺寸不作嚴(yán)格要求)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,已知棱長為4的正方體ABCD-A′B′C′D′,M是正方形BB′C′C的中心,P是△A′C′D內(nèi)(包括邊界)的動點(diǎn).滿足PM=PD,則點(diǎn)P的軌跡長度是( 。
A.$\frac{\sqrt{11}}{2}$B.$\frac{\sqrt{14}}{2}$C.$\sqrt{11}$D.$\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若x∈[0,$\frac{π}{2}$],使(2-sin2x)sin(x+$\frac{π}{4}$)=1,則x=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知某幾何體由相同的n個(gè)小正方體構(gòu)成,其三視圖如圖所示,則n=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a,b是任意實(shí)數(shù),且a<b,則( 。
A.a2<b2B.$\frac{a}>1$C.lg(b-a)>0D.($\frac{1}{3}$)a>($\frac{1}{3}$)b

查看答案和解析>>

同步練習(xí)冊答案