7.設(shè)$\overrightarrow{a}$=(3,-2,-1)是直線l的方向向量,$\overrightarrow{n}$=(1,2,-1)是平面α的法向量,則直線l與平面α( 。
A.垂直B.平行C.在平面α內(nèi)D.平行或在平面α內(nèi)

分析 推導(dǎo)出$\overrightarrow{a}•\overrightarrow{n}$=0,從而得到l∥α或l?α.

解答 解:∵$\overrightarrow{a}$=(3,-2,-1)是直線l的方向向量,
$\overrightarrow{n}$=(1,2,-1)是平面α的法向量,
∴$\overrightarrow{a}•\overrightarrow{n}$=3-4+1=0,
∴l(xiāng)∥α或l?α.
∴線l與平面α平行或直線l在平面α內(nèi).
故選:D.

點(diǎn)評(píng) 本題考查直線與平面的位置關(guān)系的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間中線線、線面、面面間的相互關(guān)系的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某校教務(wù)處對(duì)本校高三文科學(xué)生第一次模擬考試的數(shù)學(xué)成績進(jìn)行分析,用分層抽樣方法抽取了20名學(xué)生的成績,分?jǐn)?shù)用莖葉圖記錄如圖所示(部分?jǐn)?shù)據(jù)丟失),并繪制如下頻率分布表:
分?jǐn)?shù)段(分)[50,70)[70,90)[90,110)[110,130)[130,150]合計(jì)
頻數(shù)b
頻率a0.2
(1)求表中a,b的值及分?jǐn)?shù)在[70,80)與[90,100)范圍內(nèi)的學(xué)生人數(shù);
(2)從成績優(yōu)秀(分?jǐn)?shù)在[120,150]范圍為優(yōu)秀)的學(xué)生中隨機(jī)選2名學(xué)生得分,求至少取得一名學(xué)生得分在[130,150]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖1,2,在Rt△ABC中,AB=BC=4,點(diǎn)E在線段AB上,過點(diǎn)E作交AC于點(diǎn)F,將△AEF沿EF折起到△PEF的位置(點(diǎn)A與P重合),使得∠PEB=60°.

(1)求證:EF⊥PB;
(2)試問:當(dāng)點(diǎn)E在何處時(shí),四棱錐P-EFCB的側(cè)面的面積最大?并求此時(shí)四棱錐P-EFCB的體積及直線PC與平面EFCB所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若復(fù)數(shù)z滿足z•i-3i=|3+4i|,則z的共軛復(fù)數(shù)為(  )
A.3-5iB.3+5iC.5-3iD.5+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)的定義域是x≠0的一切實(shí)數(shù),對(duì)定義域內(nèi)的任意a,b都有f(a•b)=f(a)+f(b),當(dāng)x>1時(shí),f(x)>0.
(1)證明f(x)是偶函數(shù);
(2)證明f(x)在(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知變量x、y滿足約束條件$\left\{{\begin{array}{l}{x-2≤0}\\{2x-y≥0}\\{x+y-3≥0}\end{array}}\right.$,則z=x+y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線PQ過P(2,3),Q(6,5)則直線PQ的斜率是(  )
A.2B.1C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=lg(x+1)+$\frac{1}{{\sqrt{1-2x}}}$的定義域?yàn)?(-1,\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)求f(x)在x∈[0,π]上的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案