11.給出下面四個(gè)命題(其中m,n,l是空間中不同的直線(xiàn),α,β是空間中不同的平面)中錯(cuò)誤的命題個(gè)數(shù)為( 。
①m∥n,n∥α⇒m∥α
②α⊥β,α∩β=m,l⊥m⇒l⊥β
③l⊥m,l⊥n,m?α,n?α⇒l⊥α
④m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β
A.1B.2C.3D.4

分析 ①根據(jù)線(xiàn)面平行的判定定理進(jìn)行判斷,
②根據(jù)線(xiàn)面垂直的性質(zhì)進(jìn)行判斷,
③跟姐姐線(xiàn)面垂直的性質(zhì)進(jìn)行判斷,
④跟姐姐面面平行的判定定理和性質(zhì)進(jìn)行判斷.

解答 解:①m∥n,n∥α⇒m∥α或m?α,故①錯(cuò)誤,
②α⊥β,α∩β=m,l⊥m⇒l⊥β或l?β或l與β相交,故②錯(cuò)誤
③當(dāng)m與n相交時(shí),l⊥α,當(dāng)m與n不相交時(shí),l⊥α不成立,故③錯(cuò)誤,
④m∩n=A,設(shè)經(jīng)過(guò)m,n的平面為γ,
∵m∥α,n∥α,∴α∥γ,
∵m∥β,n∥β⇒β∥γ,則α∥β成立,故④正確,
故錯(cuò)誤的是①②③,
故選:C

點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及空間直線(xiàn)和平面的位置關(guān)系,要求熟練掌握相應(yīng)的判定定理和性質(zhì)定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知A(2,0),B(3,$2\sqrt{6}$).
(1)求中心在原點(diǎn),A為長(zhǎng)軸右頂點(diǎn),離心率為$\frac{{\sqrt{3}}}{2}$的橢圓的標(biāo)準(zhǔn)方程;
(2)求中心在原點(diǎn),A為右焦點(diǎn),且經(jīng)過(guò)B點(diǎn)的雙曲線(xiàn)的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=sin(x+$\frac{π}{2}$),g(x)=cos(x-$\frac{π}{2}$),則下列結(jié)論中正確的是( 。
A.函數(shù)y=f(x)•g(x)的最小正周期為2π
B.函數(shù)y=f(x)•g(x)的最大值為2
C.將函數(shù)y=f(x)的圖象向左平移$\frac{π}{2}$單位后得y=g(x)的圖象
D.將函數(shù)y=f(x)的圖象向右平移$\frac{π}{2}$單位后得y=g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.點(diǎn)P(1,-2,3)在空間直角坐標(biāo)系中,關(guān)于坐標(biāo)平面xOy的對(duì)稱(chēng)點(diǎn)為P′,則點(diǎn)P與P′間的距離|PP′|為( 。
A.$\sqrt{14}$B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.下面有四個(gè)關(guān)于充要條件的命題:
①若x∈A,則x∈B是A⊆B的充要條件;
②函數(shù)y=x2+bx+c為偶函數(shù)的充要條件是b=0;
③x=1是x2-2x+1=0的充要條件;
④若a∈R,則a>1是$\frac{1}{a}$<1的充要條件,
其中真命題的序號(hào)是①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=|lnx|,a>b>0,f(a)=f(b),則$\frac{{{a^2}+{b^2}}}{a-b}$的最小值等于( 。
A.$2\sqrt{2}$B.$\sqrt{5}$C.$2+\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.閱讀如圖框圖,回答問(wèn)題:?
①寫(xiě)出函數(shù)y關(guān)于x的表達(dá)式?;
②求出輸入x與輸出y相等的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2},x∈R)$的圖象的一部分如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)y=f(x)+f(x+2)在[-3,1]上的增區(qū)間及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.當(dāng)x∈(-1,2)時(shí),復(fù)數(shù)z=(x+1)+(x-2)i(x∈R)對(duì)應(yīng)的復(fù)平面內(nèi)的點(diǎn)在第四象限.

查看答案和解析>>

同步練習(xí)冊(cè)答案