2.有300m長(zhǎng)的籬笆材料,如果利用已有的一面墻(設(shè)長(zhǎng)度夠用)作為一邊,圍成一塊矩形的菜地,(如圖所示)
(1)用長(zhǎng)度x表示菜地的面積S;
(2)當(dāng)矩形的長(zhǎng)、寬各為多少時(shí),這塊菜地的面積最大.

分析 (1)求出矩形另一組對(duì)邊的長(zhǎng),可用長(zhǎng)度x表示菜地的面積S;
(2)由基本不等式可得結(jié)論.

解答 解:(1)由題意,矩形另一組對(duì)邊的長(zhǎng)為$\frac{300-x}{2}$m,
∴菜地的面積S=$\frac{1}{2}x(300-x)$(0<x<300);
(2)由基本不等式可得S=$\frac{1}{2}x(300-x)$≤$\frac{1}{2}•(\frac{x+300-x}{2})^{2}$=11250,
當(dāng)且僅當(dāng)x=300-x,即x=150m時(shí),這塊菜地的面積最大,
∴矩形的長(zhǎng)、寬各為150m,75m時(shí),這塊菜地的面積最大.

點(diǎn)評(píng) 本題考查矩形面積的計(jì)算,考查基本不等式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.由函數(shù)y=lgx的圖象畫(huà)出下列函數(shù)的圖象.
(1)y=lg(x-1);
(2)y=lg|x|;
(3)y=|lgx-1|;
(4)y=lg|x-1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.等比數(shù)列{an}中,已知q=2,a2=8,則a6=128.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.底面是正方形的四棱錐的三視圖如圖所示,則該四棱錐中,面積最大的側(cè)面的面積為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{6}}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x∈R恒有f(x+1)=f(x-1),已知當(dāng)x∈[0,1]時(shí),$f(x)={(\frac{1}{2})^{1-x}}$,則:①2是函數(shù)f(x)的周期;②函數(shù)f(x)在(1,2)上遞減,在(2,3)上遞增;③函數(shù)f(x)的最大值是1,最小值是0;④當(dāng)x∈(3,4)時(shí),$f(x)={(\frac{1}{2})^{x-3}}$.其中所有正確命題的序號(hào)是( 。
A.①②B.②④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知f1(x)=sinx+cosx,
f2(x)=f1′(x),
f3(x)=f2′(x),

fn(x)=fn-1′(x),…(n∈N*,n≥2).
則${f_1}(\frac{π}{4})+{f_2}(\frac{π}{4})+…+{f_{2016}}(\frac{π}{4})$的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,三角形ABC是邊長(zhǎng)為4的正三角形,PA⊥底面ABC,$PA=\sqrt{7}$,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AC上,且DE⊥AC.
(1)證明:平面PDE⊥平面PAC;
(2)求直線AD和平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=ex+lnx在點(diǎn)(1,f(1))處的切線的方程為( 。
A.ex-y+e-1=0B.(e+1)x-y-1=0C.x+y-e-1=0D.2e-y-e=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若函數(shù)f(x)單調(diào)函數(shù),且對(duì)任意實(shí)數(shù)x,均有f[f(x)-ax]=a+1(a≥e,e自然數(shù)對(duì)數(shù)的底數(shù)),則${∫}_{0}^{1}$f(x)dx的最小值為( 。
A.e-1B.e+1C.eD.$\frac{1}{e}+1$

查看答案和解析>>

同步練習(xí)冊(cè)答案