分析 根據題意畫出圖形,過點A作AM⊥BC,垂足為M,
由此得出當點D在線段MC內時,$\overrightarrow{AD}$•$\overrightarrow{DC}$<0,從而求出對應的概率值.
解答 解:如圖所示,
△ABC中,AB=2,AC=1,∠BAC=120°,
∴BC2=AB2+AC2-2AB•ACcos∠BAC=22+12-2×2×1×cos120°=7,
∴BC=$\sqrt{7}$;
過點A作AM⊥BC,垂足為M,
則$\frac{1}{2}$AM•BC=$\frac{1}{2}$AB•ACsin120°,
∴AM=$\frac{2×1×\frac{\sqrt{3}}{2}}{\sqrt{7}}$=$\frac{\sqrt{3}}{\sqrt{7}}$,
∴BM=$\sqrt{{AB}^{2}{-AM}^{2}}$=$\sqrt{{2}^{2}{-(\frac{\sqrt{3}}{\sqrt{7}})}^{2}}$=$\frac{5}{\sqrt{7}}$;
當點D在線段BM內時,$\overrightarrow{AD}$•$\overrightarrow{DC}$=|$\overrightarrow{AD}$|×|$\overrightarrow{DC}$|×cos∠ADB<0,
故所求的概率為P=$\frac{BM}{BC}$=$\frac{\frac{5}{\sqrt{7}}}{\sqrt{7}}$=$\frac{5}{7}$.
故答案為:$\frac{5}{7}$.
點評 本題考查了平面向量的數量積與幾何概型的概率計算問題,也考查了轉化法與數形結合思想的應用問題,是基礎題目.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com