12.為使政府部門與群眾的溝通日常化,某城市社區(qū)組織“網(wǎng)絡(luò)在線問政”活動.2015年,該社區(qū)每月通過問卷形式進行一次網(wǎng)上問政;2016年初,社區(qū)隨機抽取了60名居民,對居民上網(wǎng)參政議政意愿進行調(diào)查.已知上網(wǎng)參與問政次數(shù)與參與人數(shù)的頻數(shù)分布如表:
參與調(diào)查問卷次數(shù)[0,2)[2,4)[4,6)[6,8)[8,10)[10,12]
參與調(diào)查問卷人數(shù)814814106
(1)若將參與調(diào)查問卷不少于4次的居民稱為“積極上網(wǎng)參政居民”,請你根據(jù)頻數(shù)分布表,完成2×2列聯(lián)表,據(jù)此調(diào)查你是否有99%的把握認為在此社區(qū)內(nèi)“上網(wǎng)參政議政與性別有關(guān)”?
合計
積極上網(wǎng)參政議政8
不積極上網(wǎng)參政議政
合計40
P(k2>k00.1000.0500.010
k02.7063.8416.635
(2)從被調(diào)查的人中按男女比例隨機抽取6人,再從選取的6人中選出2人參加政府聽證會,求選出的2人恰為1男1女的概率.
附:k2=$\frac{{n{{(ac-bd)}^2}}}{(a+b)(a+c)(c+d)(b+d)}$.

分析 (1)根據(jù)頻率分布表,計算積極上網(wǎng)參政議政人數(shù)與不積極參政人數(shù),填寫2×2列聯(lián)表,計算k2,對照數(shù)表得出結(jié)論;
(2)利用分層抽樣原理計算抽取6人中男、女居民的人數(shù),用列舉法求出基本事件數(shù),計算所求的概率值.

解答 解:(1)積極上網(wǎng)參政議政人數(shù)為8+14+10+6=38,
不積極參政人數(shù)為8+14=22,填寫2×2列聯(lián)表,如下;

合計
積極上網(wǎng)參政議政30838
不積極上網(wǎng)參政議政101222
合計402060
計算k2=$\frac{{n{{(ac-bd)}^2}}}{(a+b)(a+c)(c+d)(b+d)}$=$\frac{60{×(30×12-10×8)}^{2}}{38×22×40×20}$≈7.03>6.635,
據(jù)此調(diào)查有99%的把握認為在此社區(qū)內(nèi)“上網(wǎng)參政議政與性別有關(guān)”;
(2)從被調(diào)查的人中按男女比例隨機抽取6人,其中男居民有6×$\frac{40}{60}$=4人,可記為a、b、c、d,
女居民有2人,可記為E、F,
從選取的6人中選出2人,基本事件是
ab、ac、ad、aE、aF、bc、bd、bE、bF、cd、cE、cF、dE、dF、EF共15種,
其中選出的2人恰為1男1女的基本事件是
aE、aF、bE、bF、cE、cF、dE、dF共8種,
故所求的概率P=$\frac{8}{15}$.

點評 本題考查了頻率分布表與獨立性檢驗的應(yīng)用問題,也考查了用列舉法求古典概型的概率問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.定義在R上函數(shù)f(x),且f(x)+f(-x)=0,當(dāng)x<0時,f(x)=($\frac{1}{4}$)x-8×($\frac{1}{2}$)x-1
(1)求f(x)的解析式;
(2)當(dāng)x∈[1,3]時,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的各項均為正,a1=2,Sn是它的前n項和,且Sn=pan2+2pan(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an•2n}的前n項和Tn;
(3)求證:$\frac{{a}_{1}{a}_{2}…{a}_{n}}{({a}_{1}-1)({a}_{2}-1)…({a}_{n}-1)}$>$\sqrt{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在區(qū)間[-1,1]內(nèi)任取兩個數(shù)x、y,記事件“x+y≤1”的概率為p1,事件“|x-y|≤1”的概率為p2,事件“y≤x2”的概率為p3,則( 。
A.p1<p2<p3B.p2<p3<p1C.p1<p3<p2D.p3<p2<p1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知x、y滿足約束條件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+3y≤6\end{array}\right.$,若z=log2(2x+y+2)的最大值為( 。
A.8B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖算法流程,記輸出的y=f(x),則f(f($\frac{1}{e}}$))=(  )
A.-1B.1C.$\frac{1}{e}$D.$\frac{1}{e^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某校高一年級學(xué)生全部參加了體育科目的達標(biāo)測試,現(xiàn)從中隨機抽取40名學(xué)生的測試成績,整理數(shù)據(jù)并按分數(shù)段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]進行分組,假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替(如分數(shù)段[70,80)用數(shù)值75代替),則得到體育成績的折線圖(如圖).

(I)從體育成績在[60,70)和[80,90)的樣本學(xué)生中隨機抽取2人,求在抽取的2名學(xué)生中,至少有1人體育成績在[60,70)的概率.
(II)體育成績大于或等于70分的學(xué)生被稱為“體育良好”.從高一年級全體學(xué)生中隨機抽取4人,其中“體育良好”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ln$\frac{x}{a}$,曲線y=f(x)在(1,f(1))處的切線方程為x-y-1=0.
(1)求實數(shù)a的值;
(2)設(shè)h(x)=f(x)-ex(e為自然對數(shù)的底數(shù)),h'(x)表示h(x)的導(dǎo)函數(shù),求證:對于h(x)的圖象上不同兩點 A(x1,y1),B(x2,y2),x1<x2,存在唯一的x0∈(x1,x2),使直線AB的斜率等于h'(x0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若f(x)=log${\;}_{\frac{1}{3-a}+1}$x在(1,+∞)是增函數(shù),那么實數(shù)a的取值范圍是(-∞,3).

查看答案和解析>>

同步練習(xí)冊答案