9.在棱長為2的正方體ABCD-A1B1C1D1內(nèi)任取一點(diǎn)M,則點(diǎn)M到正方體的中心的距離不大于1的概率為( 。
A.$\frac{π}{18}$B.$\frac{π}{12}$C.$\frac{π}{6}$D.$\frac{π}{3}$

分析 本題是幾何概型問題,滿足條件的點(diǎn)M在以正方體的中心為球心,球半徑為1的球內(nèi),求出其體積,再根據(jù)幾何概型概率公式結(jié)合正方體的體積的方法求解即可.

解答 解:滿足條件的點(diǎn)M在以正方體的中心為球心,球半徑為1的球內(nèi),
則所求的概率$P=\frac{{\frac{4}{3}π•{1^3}}}{2^3}=\frac{π}{6}$,
故選C.

點(diǎn)評 幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x|x-a|+2x.
(1)當(dāng)a=3時,方程f(x)=m的解的個數(shù);
(2)對任意x∈[1,2]時,函數(shù)f(x)的圖象恒在函數(shù)g(x)=2x+1圖象的下方,求a的取值范圍;
(3)f(x)在(-4,2)上單調(diào)遞增,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知正三角形ABC的邊長為a,那么它的平面直觀圖的面積為$\frac{\sqrt{6}}{16}$a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右焦點(diǎn)$F(\sqrt{3},0)$,且離心率$e=\frac{{\sqrt{3}}}{2}$.
(1)求橢圓C的方程.
(2)過F且傾斜角為45°的直線l與橢圓交于不同的兩點(diǎn)M,N,求△OMN(O為坐標(biāo)原點(diǎn))的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=x2-ax-alnx(a∈R),g(x)=-x3+$\frac{5}{2}$x2+2x-6,g(x)在[1,4]上的最大值為b,當(dāng)x∈[1,+∞)時,f(x)≥b恒成立,則a的取值范圍( 。
A.a≤2B.a≤1C.a≤-1D.a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知{an}(n=1,2,3,…)是由非負(fù)整數(shù)組成的無窮數(shù)列,該數(shù)列前n項(xiàng)的最大值記為An,第n項(xiàng)之后各項(xiàng)an+1,an+2,…的最小值記為Bn,dn=An-Bn
(1)若{an}滿足a1=3,當(dāng)n≥2時,${a_n}={3^n}-1$,寫出d1,d2,d3的值;
(2)設(shè)d是非負(fù)整數(shù),證明:dn=-d的充分必要條件為{an}是公差為d的等差數(shù)列;
(3)若{an}的通項(xiàng)公式為${a_n}={2^n}$,求數(shù)列$\left\{{-\frac{n^2}{d_n}}\right\}$的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.讀如圖的程序,若輸入x=-2,則輸出y=( 。
A.4B.0C.-2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知銳角三角形ABC中的內(nèi)角A,B,C的對邊分別為a,b,c,向量$\overrightarrow{m}$=(2sinB,$\sqrt{3}$),$\overrightarrow{n}$=(2cos2$\frac{B}{2}$-1,cos2B),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求函數(shù)f(x)=sin2xcosB-cos2xsinB的最小正周期及單調(diào)遞增區(qū)間.
(2)若b=4,求三角形ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=cos2x-2sinx+3的值域?yàn)閇1,5].

查看答案和解析>>

同步練習(xí)冊答案