已知三點A(1,-1),B(a,3),C(4,5)在同一直線上,則實數(shù)a的值是( 。
A、1B、3C、4D、不確定
考點:直線的斜率
專題:直線與圓
分析:三點A(1,-1),B(a,3),C(4,5)在同一直線上,可得kAB=kAC,利用斜率計算公式即可得出.
解答: 解:∵三點A(1,-1),B(a,3),C(4,5)在同一直線上,
∴kAB=kAC,
4
a-1
=
6
3
,
解得a=3.
故選:B.
點評:本題考查了三點共線與斜率的關(guān)系、斜率計算公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的是( 。
A、命題“若x>y,則-x<-y”的逆否命題是“若-x>-y,則x<y”
B、若命題P:?x∈R,x2+1>0,則¬P:?x∈R,x2+1>0
C、設(shè)l是一條直線,α,β是兩個不同的平面,若l⊥α,l⊥β,則α∥β
D、設(shè)x,y∈R,“(x-y)•x2<0”是“x<y”的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:關(guān)于x的不等式x2+2ax+4>0,對一切x∈R恒成立.命題q:拋物線y2=4ax的焦點在(1,0)的左側(cè),若p或q為真命題,p且q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a<0,b<0,e=2.71828…是自然對數(shù)的底數(shù),那么( 。
A、若5ea+4a=5eb+3b,則a>b
B、若5ea+4a=5eb+3b,則a<b
C、若5ea-4a=5eb-3b,則a>b
D、若5ea-4a=5eb-3b,則a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:實數(shù)x滿足
0<x≤4
x2-2x-1>0
,q:實數(shù)x滿足x2-4ax+3a2<0(a>0)
(1)當(dāng)a=2,x=3時,試判斷命題p∧q的真假
(2)若q是p的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)D、E、F分別是△A BC的三邊 BC、C A、A B上的點,且
DC
=2
BD
,
CE
=2
EA
,
AF
=2
FB
,則
AD
+
BE
+
CF
BC
( 。
A、互相垂直
B、既不平行也不垂直
C、同向平行
D、反向平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=f(x)圖象過點(2,8),則f(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題的說法正確的是( 。
A、命題“?x∈R,均有x2-x+1>0”的否定是:“?x0∈R,使得x02-x0+1<0”
B、在△ABC 中,“sinA>sinB”是“A>B”成立的充要條件
C、線性回歸方程y=
b
+a對應(yīng)的直線一定經(jīng)過其樣本數(shù)據(jù)點(x1,y1)、(x2,y2)、…,(xn,yn) 中的一個
D、在2×2列聯(lián)表中,ad-bc的值越接近0,說明兩個分類變量有關(guān)的可能性就越大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x2=2py的焦點與雙曲線2y2-2x2=1的一個焦點重合,若過該拋物線上的一點B的切線與兩坐標(biāo)軸圍成的三角形的面積等于
1
2
,求B縱坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案