16.已知等差數(shù)列數(shù)列{an}滿足an+1+an=4n,則a1=( 。
A.-1B.1C.2D.3

分析 根據(jù)an+1+an=4n,寫出a2+a1,a3+a2的值,兩式作差可求出公差,從而可求出首項(xiàng).

解答 解:∵數(shù)列{an}是等差數(shù)列,且an+1+an=4n,
∴a2+a1=4,a3+a2=8,
兩式相減得a3-a1=8-4=4,
∵數(shù)列{an}是等差數(shù)列
∴2d=4,即d=2,
則a2+a1=4
即2a1+d=4
解得a1=1.
故選:B.

點(diǎn)評(píng) 本題主要考查了等差數(shù)列的通項(xiàng),以及數(shù)列首項(xiàng)等概念,同時(shí)考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=2x+1+1.
(1)求f(x)的解析式;
(2)在所給的坐標(biāo)系內(nèi)畫出函數(shù)f(x)的草圖,并求方程f(x)=m恰有兩個(gè)不同實(shí)根時(shí)的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)短軸的兩個(gè)端點(diǎn)為A、B,點(diǎn)C為橢圓上異于A、B的一點(diǎn),直線AC與直線BC的斜率之積為-$\frac{1}{4}$,則橢圓的離心率為( 。
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.對(duì)于n∈N*,將n表示為$n={a_0}•{2^k}+{a_1}•{2^{k-1}}+…+{a_{k-1}}•{2^1}+{a_k}•{2^0}$,
當(dāng)i=0時(shí),ai=1,
當(dāng)1≤i≤k時(shí),ai=0或1.
記I(n)為上述表示中a為0的個(gè)數(shù)(例如:1=1•20,4=1•22+0•21+0•20,所以I(1)=0,I(4)=2),
則(1)I(12)=2,(2)I(1)+I(2)+…+I(2048)=9228.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)a>b>1,則下列不等式成立的是(  )
A.alnb>blnaB.alnb<blnaC.aeb>beaD.aeb<bea

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓C過(guò)點(diǎn)$M({0,\sqrt{3}})$,且△MF1F2為正三角形.
(1)求橢圓C的方程;
(2)垂直于x軸的直線與橢圓C交于A、B兩點(diǎn),過(guò)點(diǎn)P(4,0)的直線PB交橢圓C于另一點(diǎn)E,證明:直線AE與x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.點(diǎn)M是圓x2+y2=4上的動(dòng)點(diǎn),點(diǎn)N與點(diǎn)M關(guān)于點(diǎn)A(1,1)對(duì)稱,則點(diǎn)N的軌跡方程是(x-2)2+(y-2)2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.巴蜀中學(xué)第七周將安排高二年級(jí)的5名學(xué)生會(huì)干部去食堂維持秩序,要求星期一到星期五每天只安排一人,每人只安排一天,其中甲同學(xué)不能安排在星期一,乙同學(xué)不能安排在星期五,丙同學(xué)不能和甲同學(xué)安排在相鄰的兩天,則滿足要求的不同安排方法有( 。┓N.
A.46B.62C.72D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C的兩個(gè)焦點(diǎn)是F1(-2,0),F(xiàn)2(2,0),且橢圓C經(jīng)過(guò)點(diǎn)$A(0,\sqrt{5})$.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)若過(guò)左焦點(diǎn)F1且傾斜角為45°的直線l與橢圓C交于P、Q兩點(diǎn),求線段PQ的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案