15.函數(shù)y=f(x)的圖象為C,C關(guān)于直線x=1對稱圖象為C1,將C1向左平移2個單位后得到圖象C2,則C2對應(yīng)的函數(shù)為(  )
A.y=f(-x)B.y=f(1-x)C.y=f(2-x)D.y=f(3-x)

分析 利用對稱變換,由“關(guān)于x=1對稱”得到C1;根據(jù)平移變換“將C1向左平移2個單位后得到C2”根據(jù)左加右減,得到到C2

解答 解:函數(shù)y=f(x)的圖象為C,而C關(guān)于直線x=1的對稱圖象為C1:y=f(2-x);
將C1:y=f(2-x)向左平移2個單位后得到C2,則C2:y=f(2-(x+2))=f(-x).
故選A.

點評 本題主要考查圖象間的平移變換和對稱變換,這兩種變換考查較多應(yīng)熟練掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+3cosα\\ y=-3+3sinα\end{array}$(α為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcosθ-2ρsinθ-3=0.
(1)分別寫出曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)若曲線C1與曲線C2交于P、Q兩點,求△POQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù)且a≠0),f(0)=f(2),且方程f(x)=x有相等的實數(shù)根.
(1)求f(x)的解析式;
(2)求函數(shù)f(x)在[${\frac{1}{2}$,3]的最大值和最小值,并求出取得最大與最小值時的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,若sinBsinC=cos2$\frac{A}{2}$,則下面等式一定成立的是(  )
A.A=BB.A=CC.B=CD.A=B=C

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合M={-2,0,2,4},N={x|x2<9},則M∩N=(  )
A.{0,2}B.{-2,0,2}C.{0,2,4}D.{-2,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x-1|-1,g(x)=-|x+1|-4.
(1)若函數(shù)f(x)的值不大于1,求x的取值范圍;
(2)若不等式f(x)-g(x)≥m+1的解集為R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知橢圓C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{3}$=1,直線l:y=kx-2與橢圓C交于A,B兩點,點P(0,1),且|PA|=|PB|,則直線l的方程為x-y-2=0或x+y+2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)a+b=2,b>0,當(dāng)$\frac{1}{2|a|}$+$\frac{|a|}$取得最小值時,a的值為(  )
A.-3B.-2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.兩直線l1:ax+by=0,l2:(a-1)x+y+b=0,若直線l1、l2同時平行于直線l:x+2y+3=0,則a,b的值為( 。
A.a=$\frac{3}{2}$,b=-3B.a=$\frac{2}{3}$,b=-3C.a=$\frac{3}{2}$,b=3D.a=$\frac{2}{3}$,b=3

查看答案和解析>>

同步練習(xí)冊答案