2.當(dāng)a>0且a≠1時(shí),函數(shù)f (x)=ax-2-3必過(guò)定點(diǎn)(2,-2).

分析 由式子a0=1可以確定x=2時(shí),f(2)=-2,即可得答案.

解答 解:因?yàn)閍0=1,故f(2)=a0-3=-2,
所以函數(shù)f (x)=a x-2-3必過(guò)定點(diǎn)(2,-2)
故答案為:(2,-2).

點(diǎn)評(píng) 本題考查指數(shù)型函數(shù)恒過(guò)定點(diǎn)問(wèn)題,抓住a0=1是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.為了檢驗(yàn)“喜歡玩手機(jī)游戲與認(rèn)為作業(yè)多”是否有關(guān)系,某班主任對(duì)班級(jí)的30名學(xué)生進(jìn)行了調(diào)查,得到一個(gè)2×2列聯(lián)表:
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(在答題卡上直接填寫(xiě)結(jié)果,不需要寫(xiě)求解過(guò)程);
認(rèn)為作業(yè)多認(rèn)為作業(yè)不多合計(jì)
喜歡玩手機(jī)游戲182
不喜歡玩手機(jī)游戲6
合計(jì)30
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為“喜歡玩手機(jī)游戲”與“認(rèn)為作業(yè)多”有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知邊長(zhǎng)為1的正方體內(nèi)接于半球體,即正方體的頂點(diǎn)中,有四點(diǎn)在球面上,另外四點(diǎn)在半球體的底面圓內(nèi),則半球體的體積為( 。
A.$\frac{16π}{3}$B.$\sqrt{6}π$C.$\frac{{\sqrt{6}π}}{2}$D.$4\sqrt{6}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A={x|x=$\frac{1}{9}$(2n+1),n∈Z},B={x|x=$\frac{4}{9}$n±$\frac{1}{9}$,n∈Z},則集合A,B之間的關(guān)系是( 。
A.A⊆BB.B⊆AC.A=BD.A?B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求y=|2x-1|-|x|+1的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知:f(x)=$\left\{{\begin{array}{l}{{2^{x-2}}}\\{lo{g_2}(x-1)}\end{array}}\right.\begin{array}{l}{(x≤2)}\\{(x>2)}\end{array}$,則f(f(5))等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在區(qū)間[0,2]上任取兩個(gè)實(shí)數(shù)a,b,則函數(shù)f(x)=x2+ax-$\frac{1}{4}$b2+1在R上沒(méi)有零點(diǎn)的概率是( 。
A.$\frac{π}{8}$B.$\frac{4-π}{4}$C.$\frac{4-π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+cost\\ y=sint\end{array}$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為θ=$\frac{π}{4}$,試求C1與C2交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={-2,-1,0,1,2,3},B={y|y=|x|-3,x∈A},則A∩B=(  )
A.{-2,1,0}B.{-1,0,1,2}C.{-2,-1,0}D.{-1,0,1}

查看答案和解析>>

同步練習(xí)冊(cè)答案