12.運(yùn)行如圖所示的程序,當(dāng)輸入n=840和m=1764時(shí),輸出結(jié)果是84.

分析 由程序結(jié)構(gòu)看出,第一次循環(huán)后m的值是除數(shù),除數(shù)n的值是運(yùn)算所得的余數(shù),在第二次循環(huán)中又一次執(zhí)行了這樣一個(gè)取余賦值的過(guò)程,一直到余數(shù)為0時(shí)退出循環(huán)體.

解答 解:模擬程序的執(zhí)行,可得
此程序功能是輾轉(zhuǎn)相除法求最大公約數(shù),故
   1764÷840的商是2,余數(shù)是84,
   840÷84的商是10,余數(shù)是0
   由此可知,1764與840兩數(shù)的最大公約數(shù)是84.
  故答案為:84.

點(diǎn)評(píng) 本題考查程序語(yǔ)句與輾轉(zhuǎn)相除法求兩數(shù)的最大公約數(shù),是算法案例中的一道重要的例題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若函數(shù)f(x)=x|x|-x+a2-a-2為R上的奇函數(shù),則實(shí)數(shù)a的值為( 。
A.-1B.2C.-1或2D.-2或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.命題p:?x∈[1,2],x2-m≥0,命題q:?x∈R,x2+mx+1>0,若命題p∧q為真命題,則實(shí)數(shù)m的取值范圍為(-2,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=|x-2|,g(x)=kx-1,若方程f(x)=g(x)有兩個(gè)不相等的實(shí)根,則實(shí)數(shù)k的取值范圍是$\frac{1}{2}$<k<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{4x+1,}&{x<1}\\{{x^2}-6x+10,}&{x≥1}\end{array}}\right.$,關(guān)于a的不等式f(a)-ta+2t-2>0的解集是(a1,a2)∪(a3,+∞),若a1a2a3<0,則實(shí)數(shù)t的取值范圍是(  )
A.(-3,4)B.$(\frac{1}{2},4)$C.$(-2,\frac{1}{2})$D.(-3,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={x|-1≤x≤1}和集合B={y|y=x2},則A∩B等于( 。
A.{y|0<y<1}B.{y|0≤y≤1}C.{y|y>0}D.{(0,1),(1,0)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),對(duì)于x∈R都有f(x+4)=f(x)+f(2)成立,且f(-4)=-2,當(dāng)x1,x2∈[0,2],且x1≠x2時(shí),都有(x1-x2)[f(x1)-f(x2)]>0,則下列命題錯(cuò)誤的是( 。
A.f(2016)=-2B.函數(shù)y=f(x)的一條對(duì)稱軸為x=-6
C.函數(shù)y=f(x)在[-8,-6]上為減函數(shù)D.函數(shù)y=f(x)在[-9,9]上有4個(gè)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在直角坐標(biāo)系xOy中,一條直線過(guò)拋物線y2=4x的焦點(diǎn)F且與該拋物線相交于A,B兩點(diǎn),其中點(diǎn)A在x軸上方,若該直線的傾斜角為60°,則△OAF的面積為( 。
A.$\frac{1}{2}$B.2C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若f(x+1)=2x+1,則f(x)=( 。
A.f(x)=2x-1B.f(x)=2x+1C.f(x)=2x+2D.f(x)=2x-2

查看答案和解析>>

同步練習(xí)冊(cè)答案