3.命題p:?x∈[1,2],x2-m≥0,命題q:?x∈R,x2+mx+1>0,若命題p∧q為真命題,則實數(shù)m的取值范圍為(-2,1].

分析 命題p:可得m≤(x2min.命題q:可得△<0,解得m范圍.若命題p∧q為真命題,可得p與q都為真命題,即可得出.

解答 解:命題p:?x∈[1,2],x2-m≥0,∴m≤(x2min=1.
命題q:?x∈R,x2+mx+1>0,△=m2-4<0,解得-2<m<2.
若命題p∧q為真命題,∴p與q都為真命題,∴$\left\{\begin{array}{l}{m≤1}\\{-2<m<2}\end{array}\right.$,解得-2<m≤1.
實數(shù)m的取值范圍是-2<m≤1.
故答案為:(-2,1].

點評 本題考查了函數(shù)的性質(zhì)、復合命題真假的判定方法、不等式的解法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.對于函數(shù)f(x)=$\left\{\begin{array}{l}{(x-1)^{2},x≥0}\\{(x+1)^{2},x<0}\end{array}\right.$,下列結(jié)論中正確的是( 。
A.是奇函數(shù),且在[0,1]上是減函數(shù)B.是奇函數(shù),且在[1,+∞)上是減函數(shù)
C.是偶函數(shù),且在[-1,0]上是減函數(shù)D.是偶函數(shù),且在(-∞,-1]上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知全集I={x|-3≤x<5},A={x|-1<x≤1},B={x|-3<x<1},求A∩B,A∪(∁IB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$).
(1)求函數(shù)f(x)的最小正周期和圖象的對稱軸方程;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}$]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在坐標平面xOy內(nèi),點A(x,y)(不是原點)的“k-相好點”B是指:滿足|OA|•|OB|=k(O為坐標原點)且在射線OA上的點,若點P1,P2,…P2017是直線y=-2x+10上的2017個不同的點,他們的“10-相好點”分別是${P_1}^/,{P_2}^/,…{P_{2017}}^/$
(1)若P1(2,6),求${P_1}^/$的坐標;
(2)證明:點${P_1}^/,{P_2}^/,…{P_{2017}}^/$共圓,并求出圓的方程C;
(3)第(2)問中的圓C與x軸交于M,T兩點(點M在點T的右側(cè)),過點M作直線MP,MR且kMP+kMR=0,兩直線與圓C的另外一個交點分別為P,R.直線PR的斜率是否為定值?若是,求出這個定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,則目標函數(shù)z=2x+3y的最大值( 。
A.7B.8C.10D.23

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設函數(shù)y=f(x)的圖象與y=log2(x+a)的圖象關(guān)于直線y=x對稱,且f(2)+f(4)=6,則a=7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.運行如圖所示的程序,當輸入n=840和m=1764時,輸出結(jié)果是84.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知奇函數(shù)f(x),當x<0時,f(x)=x+$\frac{1}{x}$,則f(1)=( 。
A.1B.2C.-1D.-2

查看答案和解析>>

同步練習冊答案