4.已知函數(shù) f(x)的導數(shù)為 f'(x),且滿足關系式 f(x)=x3•$\int_0^2{xdx+{x^2}f'(1)+3x}$,則 f'(2)的值等于-9.

分析 先根據(jù)定積分的計算化簡f(x),再求導,求出f′(1)的值,繼而求出 f'(2)

解答 解:f(x)=x3•$\int_0^2{xdx+{x^2}f'(1)+3x}$=x3•$\frac{1}{2}$x2|${\;}_{0}^{2}$+x2f′(1)+3x=2x3+x2f′(1)+3x,
∴f'(x)=6x2+2xf′(1)+3,
∴f'(1)=6+2f′(1)+3,
∴f'(1)=-9,
∴f'(2)=24-36+3=-9,
故答案為:-9

點評 本題考查了導數(shù)的運算和定積分的計算,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.已知關于x的方程x2+2bx+c=0(b,c∈R)在[-1,1]上有實數(shù)根,0≤4b+c≤3,則b的取值范圍是-1≤b≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=2sinωxcosωx+2$\sqrt{3}$sin2ωx-$\sqrt{3}$(ω>0)的最小正周期為π
(1)求函數(shù)f(x)的單調減區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位,再向上平移1個單位,得到y(tǒng)=g(x)的圖象,若y=g(x)在[0,b]上至少含有8個零點,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≥0\\ 2x-y-5≤0\end{array}\right.$,則$\frac{{{{(x-y)}^2}}}{xy}$的取值范圍是$[0,\frac{4}{3}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F2的直線交雙曲線于A,B兩點,連結AF1,BF1,若|AB|=|BF1|,且∠ABF1=90°,則雙曲線的離心率為$\sqrt{5-2\sqrt{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知等差數(shù)列{an}中,a1=29,S10=S20,則這個數(shù)列的前15項和最大,最大值為225.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知二次函數(shù)f(x)=x2+bx+c(b,c∈R),若f(-1)=f(2),且函數(shù)y=f(x)-x的值域為[0,+∞).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=2x-k,當x∈[1,2]時,記f(x),g(x)的值域分別為A,B,若A∪B=A,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在三棱錐P-ABC中,若PA=PB=BC=AC=5,PC=AB=4$\sqrt{2}$,則其的外接球的表面積為41π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若集合A={x|x>0},B={x|x<4},則∁A(A∩B)等于( 。
A.{x|x<0}B.{x|0<x<4}C.{x|x≥4}D.R

查看答案和解析>>

同步練習冊答案