4.在△ABC中,tanAsin2B=tanBsin2A,則△ABC一定是( 。┤切危
A.銳角B.直角C.等腰D.等腰或直角

分析 已知等式利用同角三角函數(shù)間基本關(guān)系切化弦,整理后再利用二倍角的余弦公式變形得到sin2A=sin2B,進(jìn)而得到A=B,或2A+2B=π,即可確定出三角形的形狀.

解答 解:在△ABC中,tanAsin2B=tanBsin2A,
化簡(jiǎn)得:$\frac{sinA}{cosA}$•sin2B=$\frac{sinB}{cosB}$•sin2A,
整理得:sinBcosB=sinAcosA,
化簡(jiǎn)得:sin2A=sin2B,
∴2A=2B,或2A+2B=π,
即A=B,或A+B=$\frac{π}{2}$,
則△ABC為等腰三角形或直角三角形.
故選:D.

點(diǎn)評(píng) 此題考查了二倍角的正弦、余弦函數(shù)公式,以及同角三角函數(shù)間基本關(guān)系的運(yùn)用,熟練掌握公式是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.求cos$\frac{π}{11}$cos$\frac{2π}{11}$cos$\frac{3π}{11}$cos$\frac{4π}{11}$cos$\frac{5π}{11}$=( 。
A.$\frac{1}{{2}^{5}}$B.$\frac{1}{{2}^{4}}$C.-$\frac{1}{{2}^{5}}$D.-$\frac{1}{{2}^{4}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+2y-1≥0}\\{x≤3}\end{array}\right.$,則z=(x+1)2+y2的最小值是( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知0<x<2,則$\frac{1}{x}$+$\frac{9}{2-x}$的最小值為( 。
A.8B.2C.10D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在四棱錐P-ABCD中,PA⊥面ABCD,∠DAB=90°,AB平行于CD,AD=CD=2AB=2,E,F(xiàn)分別為PC,CD的中點(diǎn)
(1)求證:AB⊥面BEF;
(2)設(shè)PA=h,若二面角E-BD-C大于45°,求h的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在△ABC中,角A、B、C所對(duì)的邊分別是a,b,c,a=2,且(2+b)(sinA-sinB)=(c-b)sinC,則△ABC面積的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知p:關(guān)于x的方程ax2+2x+1=0至少有一個(gè)負(fù)根,q:a≤1,則¬p是¬q的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)y=ax-4+5(a>0,a≠1)的圖象必經(jīng)過(guò)定點(diǎn)( 。
A.(0,5)B.(4,5)C.(3,4)D.(4,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知等差數(shù)列{an}中,a6+a8=16,a4=1,則a10的值是( 。
A.15B.30C.31D.64

查看答案和解析>>

同步練習(xí)冊(cè)答案