分析 (1)解方程f(x)=0得出f(x)的零點;
(2)令△>0得出關(guān)于b的不等式b2-4ab+4a>0恒成立,再令判別式△′<0解出a的范圍.
解答 解:(1)當(dāng)a=1,b=-2時,f(x)=x2-2x-3.
令f(x)=0,得x=3或x=-1.
所以函數(shù)f(x)的零點為3和-1.
(2)方程ax2+bx+b-1=0有兩個不同實根.
∴△=b2-4a(b-1)>0.
即對于任意b∈R,b2-4ab+4a>0恒成立.
∴16a2-16a<0,即a2-a<0,解得0<a<1.
∴實數(shù)a的取值范圍是(0,1).
點評 本題考查了二次函數(shù)的性質(zhì),函數(shù)零點的個數(shù)與方程的關(guān)系,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {4} | B. | {-2,4} | C. | {-2,0,4) | D. | {-2,$\frac{1}{3}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2i | B. | -2i | C. | 2 | D. | -2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com