6.已知函數(shù)f(x)=cos2xcosφ-sin2xsinφ(0<φ<$\frac{π}{2}$)的圖象的一個對稱中心為($\frac{π}{6}$,0),則下列說法不正確的是( 。
A.直線x=$\frac{5}{12}$π是函數(shù)f(x)的圖象的一條對稱軸
B.函數(shù)f(x)在[0,$\frac{π}{6}$]上單調(diào)遞減
C.函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位可得到y(tǒng)=cos2x的圖象
D.函數(shù)f(x)在[0,$\frac{π}{2}$]上的最小值為-1

分析 利用兩角和的余弦化簡,由題意求得φ,然后利用余弦函數(shù)的性質(zhì)逐一核對四個選項得答案.

解答 解:∵f(x)=cos2xcosφ-sin2xsinφ=cos(2x+φ)的圖象的一個對稱中心為($\frac{π}{6}$,0),
∴cos($2×\frac{π}{6}+$φ)=0,則$\frac{π}{3}+$φ=$\frac{π}{2}+kπ$,
∴φ=$\frac{π}{6}+kπ,k∈Z$.
∵0<φ<$\frac{π}{2}$,∴φ=$\frac{π}{6}$.
則f(x)=cos(2x+$\frac{π}{6}$).
∵f($\frac{5π}{12}$)=cos(2×$\frac{5π}{12}+\frac{π}{6}$)=cosπ=-1,∴直線x=$\frac{5}{12}$π是函數(shù)f(x)的圖象的一條對稱軸,故A正確;
當(dāng)x∈[0,$\frac{π}{6}$]時,2x+$\frac{π}{6}$∈[$\frac{π}{6},\frac{π}{2}$],∴函數(shù)f(x)在[0,$\frac{π}{6}$]上單調(diào)遞減,故B正確;
函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位,得到y(tǒng)=cos[2(x$-\frac{π}{6}$)$+\frac{π}{6}$]=cos(2x$-\frac{π}{6}$)的圖象,故C錯誤;
當(dāng)x∈[0,$\frac{π}{2}$]時,2x+$\frac{π}{6}$∈[$\frac{π}{6},\frac{5π}{6}$],∴函數(shù)f(x)在[0,$\frac{π}{2}$]上的最小值為cosπ=-1,故D正確.
故選:C.

點評 本題考查三角函數(shù)值的恒等變換應(yīng)用,考查了余弦型函數(shù)的圖象和性質(zhì),是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在三棱錐S-ABC中,底面ABC是邊長為3的等邊三角形,SA⊥SC,SB⊥SC,SA=SB=2,則該三棱錐的體積為$\frac{\sqrt{35}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=|2x-1|-|x+2|.
(Ⅰ)解不等式f(x)>3;
(Ⅱ)若?x0∈R,使得f(x0)+2m2<4m,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知離心率為$\frac{\sqrt{2}}{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(0,-1),且F1、F2分別是橢圓C的左、右焦點,不經(jīng)過F1的斜率為k的直線l與橢圓C相交于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)如果直線AF1、l、BF1的斜率依次成等差數(shù)列,求k的取值范圍,并證明AB的中垂線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,已知A=45°,B=105°,則$\frac{a}{c}$的值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系中:已知曲線C:$\frac{y^2}{4}+{x^2}$=1(x≥0).
(1)求曲線C的參數(shù)方程;
(2)曲線C上任意點P(除短軸端點外)與短軸兩個端點B1,B2連線分別為與x軸交于M,N兩點,O為坐標(biāo)原點,求證:|OM|•|ON|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.過橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)右焦點F(c,0)的直線l與C相交于A、B兩點,l交y軸于E點,C的離心率e=$\frac{\sqrt{2}}{2}$.當(dāng)直線l斜率為1時,點(0,b)到l的距離為$\sqrt{2}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若M(t,0)滿足:$\overrightarrow{MA}$•$\overrightarrow{MB}$=$\overrightarrow{MF}$•$\overrightarrow{ME}$,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.?dāng)?shù)列{an}的通項公式為an=(-1)n(3n-2),n∈N*,Sn是數(shù)列{an}的前n項和,那么,S20+S35的值是-22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知全集U=R,集合M={y|y=$\sqrt{4-{x}^{2}}$,x∈R},N={x|2x-1≥1,x∈R},則M∩(∁UN)等于(  )
A.[-2,2]B.[-2,1)C.[1,4]D.[0,1)

查看答案和解析>>

同步練習(xí)冊答案