15.下面四種說法:
①正態(tài)分布N(μ,σ2)在區(qū)間(-∞,μ)內(nèi)取值的概率小于0.5;
②正態(tài)曲線f(x)=$\frac{1}{\sqrt{2π}σ}{e}^{\frac{(x-μ)^{2}}{2{σ}^{2}}}$越關(guān)于直線x=μ對稱;
③服從于正態(tài)分布N(μ,σ2)的隨機變量在(μ-3σ,μ+3σ)以外取值的情況在一次試驗中幾乎不可能發(fā)生;
④當μ一定時,σ越小,曲線越“矮胖”.
其中正確的序號是( 。
A.①③B.②④C.①④D.②③

分析 ①正態(tài)分布N(μ,σ2)在區(qū)間(-∞,μ)內(nèi)取值的概率等于0.5,即可判斷;
②根據(jù)正態(tài)曲線的性質(zhì)知正態(tài)曲線f(x)=$\frac{1}{\sqrt{2π}σ}{e}^{\frac{(x-μ)^{2}}{2{σ}^{2}}}$關(guān)于直線x=μ對稱,故②正確;
③服從于正態(tài)分布N(μ,σ2)的隨機變量在(μ-3σ,μ+3σ)在兩者之間的概率接近于1,故③正確;
④當μ一定時,σ越大,曲線“矮胖”,即可判斷.

解答 解:①正態(tài)分布N(μ,σ2)在區(qū)間(-∞,μ)內(nèi)取值的概率等于0.5,故①不正確;
②正態(tài)曲線f(x)=$\frac{1}{\sqrt{2π}σ}{e}^{\frac{(x-μ)^{2}}{2{σ}^{2}}}$越關(guān)于直線x=μ對稱;
③服從于正態(tài)分布N(μ,σ2)的隨機變量在(μ-3σ,μ+3σ)以外取值幾乎不可能發(fā)生,在兩者之間的概率接近于1,故③正確;
④當μ一定時,σ越大,曲線“矮胖”,故④不正確.
∴正確的命題是②③.
故選:D.

點評 本題以命題的真假判斷為載體考查了正態(tài)分布及正態(tài)曲線,熟練掌握正態(tài)分布的相關(guān)概念是解答的關(guān)鍵,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若sin($\frac{π}{3}$+α)=$\frac{1}{3}$,則cos($\frac{5π}{6}$+α)的值為$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知△ABC中,B(2,-1),∠A的平分線所在的直線方程為x+y-3=0.BC邊上的高線所在直線方程為2x+y-5=0,求頂點A、C的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.甲乙兩人下中國象棋,甲不輸?shù)母怕蕿?0%,乙不輸?shù)母怕蕿?0%,則甲乙兩人和棋的概率為( 。
A.20%B.30%C.50%D.60%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(a-1)(3-a)x+1,x≤0}\\{(\frac{1}{2})^{x}+\frac{a}{2},x>0}\end{array}\right.$對?x1,x2∈R,x1≠x2有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,則實數(shù)a的取值范圍是0≤a<1或a>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}的通項公式為an=pn+q(p,q∈R),且a1=-$\frac{1}{2}$,a2=-$\frac{3}{4}$.
(1)求{an}的通項公式;
(2)-$\frac{255}{256}$是否為數(shù)列{an}中的項,若是,是第幾項?若不是請說明理由.
(3)該數(shù)列是遞增數(shù)列還是遞減數(shù)列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.極坐標方程ρ=5 表示的曲線是( 。
A.一條射線和一個圓B.兩條直線
C.一條直線和一個圓D.一個圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)是奇函數(shù),g(x)是偶函數(shù),且f(-2)+g(2)=2,f(2)+g(-2)=4,則f(2)=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知 $\overrightarrow a$=(2sinx,sinx-cosx),$\overrightarrow b$=($\sqrt{3}$cosx,sinx+cosx),記函數(shù)$f(x)=\overrightarrow a•\overrightarrow b$
(1)求函數(shù)f(x)取最大值時x的取值集合;
(2)設(shè)△ABC的角A,B,C所對的邊分別為a,b,c,若a=2csinA,c=$\sqrt{7}$,且△ABC的面積為$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

同步練習冊答案