學校舉辦運動會,高一(1)班共有28名同學參見比賽,有15人參加游泳比賽,有8人參加田徑比賽,有14人參加球類比賽,同事參加游泳比賽和田徑比賽的有3人,同時參加游泳比賽和球類比賽的有3人,沒有人同時參加三項比賽,問同時參加田徑和球類比賽的有多少人?只參加游泳一項比賽的有多少人?
考點:排列、組合及簡單計數(shù)問題
專題:應(yīng)用題,排列組合
分析:根據(jù)15人參加游泳比賽,有8人參加田徑比賽,同時參加游泳和田徑的有3人,同時參加游泳和球類比賽的有3人,可以求得只參加游泳比賽的人數(shù);再結(jié)合總?cè)藬?shù)即可求得同時參加田徑和球類比賽的人數(shù).
解答: 解:只參加游泳比賽的人數(shù):15-3-3=9(人);
同時參加田徑和球類比賽的人數(shù):8+14-(28-9)=3(人).
點評:本題主要考查排列、組合及簡單計數(shù)問題,考查集合之間的元素關(guān)系,注意每兩種比賽的公共部分.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

a、b是常數(shù),關(guān)于x的一元二次方程x2+(a+b)x+3+
ab
2
=0有實數(shù)解記為事件A,
(1)若a∈{1,2,3,4},b∈{2,3,4,5},求P(A);
(2)若a∈R、b∈R,-6≤a+b≤6且-6≤a-b≤6,求P(A)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點P(3,0)在下列條件下求直線方程:
(1)l過直線m:2x-y-2=0與直線n:x+y+3=0的交點;
(2)l被圓C:x2+y2-4x-4y=0所截得的弦長為2
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一正方形的兩頂點為雙曲線C的兩焦點,若另外兩個項點在雙曲線C上,則雙曲線C的離心率e=( 。
A、
5
+1
2
B、
2
2
+1
2
C、
3
+1
D、
2
+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2011年西安世園會組委會要從五名志愿者中選派四人分別從事翻譯、導游、禮儀、司機四項不同的工作,若其中有一名志愿者只能從事司機工作,其余四人均能從事這四項工作,則不同的選派方案共有(  )
A、240種B、36種
C、24種D、48種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

極點與直角坐標系的原點重合,極軸與x軸非負半軸重合,曲線C的極坐標方程為ρ=2sinθ,直線l的參數(shù)方程為
x=t
y=2+
3
t
(t為參數(shù)),直線l與曲線C交于A、B,則 線段AB的長等于(  )
A、
1
2
B、
3
2
C、1
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如程序框圖所示已知集合A={x|框圖中輸出的x值},集合B={y|框圖中輸出的y值},當x=1時A∩B=( 。
A、∅B、{3}
C、{1,3,5}D、{3,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=4acosx•sin(x-
π
3
)+
3
a+b,設(shè)x∈[0.
π
2
],f(x)的最小值是-2,最大值是
3
,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
kx+1,x≤0
lnx,x>0
,下列關(guān)于函數(shù)y=f[f(x)]+1的零點個數(shù)的判斷正確的是( 。
A、無論k為何值,均有2個零點
B、無論k為何值,均有4個零點
C、當k>0時,有3個零點;當k<0時,有2個零點
D、當k>0時,有4個零點;當k<0時,有1個零點

查看答案和解析>>

同步練習冊答案