2.已知△ABC的內(nèi)角A,B,C對的邊分別為a,b,c,且sinA+$\sqrt{2}$sinB=2sinC,則cosC的最小值等于( 。
A.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$B.$\frac{{\sqrt{6}}}{4}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}}}{4}$

分析 已知等式利用正弦定理化簡,得到關(guān)系式,利用余弦定理表示出cosC,把得出關(guān)系式整理后代入,利用基本不等式求出cosC的最小值即可.

解答 解:已知等式利用正弦定理化簡得:a+$\sqrt{2}$b=2c,
兩邊平方得:(a+$\sqrt{2}$b)2=4c2,即a2+2$\sqrt{2}$ab+2b2=4c2,
∴4a2+4b2-4c2=3a2+2b2-2$\sqrt{2}$ab,即a2+b2-c2=$\frac{3{a}^{2}+2^{2}-2\sqrt{2}ab}{4}$,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{1}{8}$($\frac{3a}$+$\frac{2b}{a}$-2$\sqrt{2}$)≥$\frac{\sqrt{6}-\sqrt{2}}{4}$(當且僅當$\frac{3a}$=$\frac{2b}{a}$,即$\sqrt{3}$a=$\sqrt{2}$b時取等號),
則cosC的最小值為$\frac{\sqrt{6}-\sqrt{2}}{4}$.
故選:A.

點評 此題考查了正弦、余弦定理,以及基本不等式的運用,熟練掌握定理是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知實數(shù)a<-1,函數(shù)f(x)=$\left\{\begin{array}{l}{(-2{x}^{3}+3a{x}^{2}+6ax-4{a}^{2}-6a)•{e}^{x},x≤1}\\{[(6a-1)lnx+x+\frac{a}{x}+15a]•e,x>1}\end{array}\right.$,若?x1,x2∈[a,-a](x1≠x2),[f(x1)-f(x2)](x1-x2)<0,則實數(shù)a的最大值為( 。
A.-3B.-2C.-1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,已知點O是△ABC的外心,H為垂心,BD為外接圓直徑.求證:
(1)$\overrightarrow{AH}$=$\overrightarrow{DC}$;
(2)$\overrightarrow{OH}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.某中學為研究某位學生物理成績與數(shù)學成績的相關(guān)性,抽取該同學高二的5次月考數(shù)學成績和相應(yīng)的物理成績?nèi)缦卤恚?br />
數(shù)學成績xi90100115130
物理成績yi6065707580
由這些樣本數(shù)據(jù)算得變量x與y滿足線性回歸方程$\widehat{y}$=0.47x+17.36,但由于某種原因該表中一次數(shù)學成績被污損,則根據(jù)回歸方程和表中數(shù)據(jù)可得污損的數(shù)學成績?yōu)椋ā 。?table class="qanwser">A.120B.122.64C.125D.127

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知實數(shù)a,b,則“l(fā)og2a>log2b”是“2a>2b”的(  )
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若$f(x)=({m-1}){x^{{m^2}-4m+3}}$是冪函數(shù),則( 。
A.f(x)在定義域上單調(diào)遞減B.f(x)在定義域上單調(diào)遞增
C.f(x)是奇函數(shù)D.f(x)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知隨機變量X的分布列如圖所示,則E(6X+8)=21.2.
X123
P0.20.40.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在銳角△ABC中,角A,B,C的對邊分別為a,b,c.若2asinB=$\sqrt{3}$b.
(1)求角A的大;
(2)若b=3,△ABC的面積為3$\sqrt{3}$,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x-2y+4≥0\\ 2x+y-2≥0\\ 3x-y-3≤0\end{array}\right.$,則x2+y2的取值范圍是( 。
A.[$\frac{4}{5}$,13]B.[$\frac{{2\sqrt{5}}}{5}$,$\sqrt{13}$]C.[0,4]D.[1,$\sqrt{13}$]

查看答案和解析>>

同步練習冊答案