7.下列函數(shù)中,在區(qū)間(0,+∞)上是增函數(shù)的是( 。
A.f(x)=-x2+2B.f(x)=$\frac{2}{x}$C.f(x)=($\frac{1}{2}$)xD.f(x)=log2x

分析 分別判斷各選項在(0,+∞)的單調(diào)性,進而得到答案.

解答 解:對于A:f(x)=-x2+2是一元二次函數(shù),對稱軸是y軸,開口向下,在區(qū)間(0,+∞)上是減函數(shù);
對于B:由函數(shù)性質(zhì)可知$f(x)=\frac{2}{x}$在區(qū)間(0,+∞)上是減函數(shù);
對于C:$f(x)=(\frac{1}{2})^{x}$的底數(shù)大于0小于1,在區(qū)間(0,+∞)上是減函數(shù);
對于D:f(x)=log2x在區(qū)間(0,+∞)上是增函數(shù).
故選:D.

點評 本題考查基本初等函數(shù)的性質(zhì),判斷的關(guān)鍵是掌握各種函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知P是橢圓$\frac{x^2}{16}$+$\frac{y^2}{9}$=1上任意一點,則點P到直線x+y-7=0的距離最大值為( 。
A.6$\sqrt{2}$B.4$\sqrt{2}$C.6$\sqrt{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.( I)設(shè)復(fù)數(shù)z滿足(1+i)z=2,其中i為虛數(shù)單位,求復(fù)數(shù)z.
( II)實數(shù)m取何值時,復(fù)數(shù)z=m2-1+(m2-3m+2)i,
( i)是實數(shù);
( ii)是純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l:x-2y-2$\sqrt{5}$=0與x,y軸分別交于點M,N,P是圓C:x2+y2=2上任意一點.
(Ⅰ)求△PMN面積的最小值;
(Ⅱ)求點P到直線l的距離小于1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)f(x)=x3-3x-a在(1,2)內(nèi)有零點,則實數(shù)a的取值范圍是(-2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=(1-ax)ln(1+x)-x,其中a是實數(shù);
(1)當(dāng)0≤x≤1時,關(guān)于x的不等式f'(x)≥0恒成立,求實數(shù)a的取值范圍;
(2)求證:e>($\frac{1001}{1000}$)1000.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標系xOy中,已知橢圓C:$\left\{{\begin{array}{l}{x=5cosφ}\\{y=3sinφ}\end{array}(φ為參數(shù))}$,直線L:$\left\{{\begin{array}{l}{x=4-2t}\\{y=3-t}\end{array}(t為參數(shù))}$
(Ⅰ)化C,L的方程為普通方程;
(Ⅱ)求過橢圓C的右焦點且與直線L平行的直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知直線y=a與函數(shù)f(x)=$\frac{1}{3}$x3-x2-3x+1的圖象相切,則實數(shù)a的值為( 。
A.-26或$\frac{8}{3}$B.-1或3C.8或-$\frac{8}{3}$D.-8或$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)f(x)=$\frac{1}{1-x}$(x≠0,x≠1),則f{f[f(x)]}的函數(shù)表達式是( 。
A.$\frac{1}{1-x}$B.$\frac{1}{(1-x)^{3}}$C.-xD.x

查看答案和解析>>

同步練習(xí)冊答案