17.設(shè)f(x)=$\frac{1}{1-x}$(x≠0,x≠1),則f{f[f(x)]}的函數(shù)表達(dá)式是( 。
A.$\frac{1}{1-x}$B.$\frac{1}{(1-x)^{3}}$C.-xD.x

分析 根據(jù)復(fù)合函數(shù)的關(guān)系,利用代入法依次進(jìn)行求解即可.

解答 解:∵f(x)=$\frac{1}{1-x}$(x≠0,x≠1),
∴f[f(x)]=$\frac{1}{1-\frac{1}{1-x}}$=-$\frac{1-x}{x}$=$\frac{x-1}{x}$,
則f{f[f(x)]}=$\frac{1}{1-\frac{x-1}{x}}$=x,
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)解析式的求解,利用代入法依次進(jìn)行求解是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列函數(shù)中,在區(qū)間(0,+∞)上是增函數(shù)的是( 。
A.f(x)=-x2+2B.f(x)=$\frac{2}{x}$C.f(x)=($\frac{1}{2}$)xD.f(x)=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{x}{x-1}$.
(1)證明:f(x)在區(qū)間(1,+∞)是減函數(shù);
(2)若實(shí)數(shù)m滿(mǎn)足f(m2)>f(m+6)>1,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知集合M={x|ax2-2x+3=0}中有一個(gè)元素,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知點(diǎn)A(-3,4),圓C:(x-1)2+(y-2)2=1,若一光線經(jīng)過(guò)點(diǎn)A并經(jīng)x軸反射后能經(jīng)過(guò)圓C上的某一點(diǎn),求入射線與x軸交點(diǎn)的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知f(x)=log2(2x+a)的定義域?yàn)椋?,+∞).
(1)求a的值;
(2)若g(x)=log2(2x+1),且關(guān)于x的方程f(x)=m+g(x)在[1,2]上有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x,x≤0}\\{{x}^{2}-4x+3,x>0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{|lnx|,x>0}\end{array}\right.$,則函數(shù)h(x)=g(f(x))-1的零點(diǎn)個(gè)數(shù)為( 。﹤(gè).
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知圓O:x2+y2=4,直線$l:x+\sqrt{2}y-6=0$,則圓O上任意一點(diǎn)A到直線l的距離小于$\sqrt{3}$的概率為(  )
A.$\frac{π}{6}$B.$\frac{1}{3}$C.$\frac{π}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)隨機(jī)變量X:B(n,p),若X的數(shù)學(xué)期望E(X)=2,方差D(X)=$\frac{4}{3}$,則P(X=2)=( 。
A.$\frac{13}{16}$B.$\frac{4}{243}$C.$\frac{13}{243}$D.$\frac{80}{243}$

查看答案和解析>>

同步練習(xí)冊(cè)答案