8.設(shè)集合A={x|-3≤x≤2},B={x|2k-1≤x≤2k+1},且A∩B=B,求實(shí)數(shù)k的取值范圍.

分析 由A∩B=B得到集合B與集合A的關(guān)系,求解實(shí)數(shù)k的取值范圍.

解答 解:由題意,得$\left\{\begin{array}{l}{2k-1≥-3}\\{2k+1≤2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k≥-1}\\{k≤\frac{1}{2}}\end{array}\right.$,
∴實(shí)數(shù)k的取值范圍為[-1,$\frac{1}{2}$].

點(diǎn)評(píng) 本題考查了子集與交集、并集的運(yùn)算轉(zhuǎn)換,解答的關(guān)鍵是對(duì)區(qū)間端點(diǎn)值的大小比較,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若sinα+cosα=$\frac{{2\sqrt{6}}}{5}$,則α在( 。
A.第一象限B.第一、二象限C.第二象限D.第二、四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某校100名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖,其中成績分組區(qū)間如表:
組號(hào)第一組第二組第三組第四組第五組
分組[50,60)[60,70)[70,80)[80,90)[90,100]
(I)求圖中a的值;
(II)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(III)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求第4組的至少有一位同學(xué)入選的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=ax-$\frac{2a+1}{x}$(a>0),若f(m2+1)>f(m2-m+3),則實(shí)數(shù)m的取值范圍是( 。
A.(2,+∞)B.(-∞,2)C.(-2,+∞)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.密碼是通信雙方按約定的法則進(jìn)行信息特殊變換的一種重要保密手段,明文在依靠一些對(duì)應(yīng)法則(密匙)下變?yōu)槊芪模缑魑?9在密匙$\sqrt{x}+1$規(guī)則下轉(zhuǎn)變?yōu)槊芪?4.在一次信息傳送過程中,最小的信息單元由兩個(gè)數(shù)字組成(不足兩位的前面補(bǔ)0,超出兩位數(shù)的取后兩位),接受到的密文為9503,密匙為“2x+1”,則破譯后的明文為:4751.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=|x-x${\;}^{\frac{1}{3}}$|的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.對(duì)于橢圓C,$\frac{x{\;}^{2}}{a{\;}^{2}}$+$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(a>b>0),c為橢圓的半焦距,e為離心率,過原點(diǎn)的直線與橢圓C交于A,B兩點(diǎn)(非頂點(diǎn)),點(diǎn)D在橢圓上,AD⊥AB,直線BD與x軸,y軸分別交于M,N.
(1)當(dāng)e=$\frac{\sqrt{2}}{2}$時(shí),證明:直線AM⊥x軸;
(2)求△OMN的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a,b,c,2cos(A-C)+cos2B=1+2cosAcosC.
(1)求證:a,b,c依次成等比數(shù)列;
(2)若b=2,求u=|$\frac{{a}^{2}+{c}^{2}-5}{a-c}$|的最小值,并求u達(dá)到最小值時(shí)cosB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若(a-2)(a-1)x2+2(a-2)x-4<0對(duì)一切x∈R恒成立,則實(shí)數(shù)a的取值范圍是($\frac{6}{5}$,2].

查看答案和解析>>

同步練習(xí)冊(cè)答案