1.與圓(x-2)2+y2=1外切,并與y軸相切的動(dòng)圓圓心P的軌跡方程是y2=6x-3.

分析 由題意,設(shè)P(x,y),則(x-2)2+y2=(x+1)2,化簡(jiǎn)可得結(jié)論.

解答 解:由題意,設(shè)P(x,y),則
因?yàn)閯?dòng)圓圓心P與圓(x-2)2+y2=1外切,并與y軸相切,
所以$\sqrt{(x-2)^{2}+{y}^{2}}$=|x+1|
所以化簡(jiǎn)可得y2=6x-3.
故答案為:y2=6x-3.

點(diǎn)評(píng) 本題考查軌跡方程,考察圓與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知點(diǎn)F為拋物線y2=4x的焦點(diǎn),該拋物線上位于第一象限的點(diǎn)A到其準(zhǔn)線的距離為5,則直線AF的斜率為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.有一枚質(zhì)地均勻的正四面體骰子,四個(gè)表面分別寫(xiě)作1、2、3、4的數(shù)字,規(guī)定“拋擲該枚骰子得到的數(shù)字是該拋擲后落在底面的那一個(gè)數(shù)字”,已知b和c是先后拋擲該枚骰子得到的數(shù)字,函數(shù)f(x)=x2+bx+c(x∈R).
(1)若b=3,求函數(shù)f(x)有零點(diǎn)的概率;
(2)求函數(shù)f(x)在區(qū)間(-2,+∞)上單調(diào)遞增的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-3≥0}\\{x-y+1≥0}\\{3x-y-5≤0}\\{\;}\end{array}\right.$,則x2+y2的最小值為( 。
A.$\frac{3\sqrt{2}}{2}$B.$\frac{9}{2}$C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知兩點(diǎn)A(0,1),B(1,0),且|MA|=2|MB|,求證:點(diǎn)M的軌跡方程為(x-$\frac{4}{3}$)2+(y+$\frac{1}{3}$)2=$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.定義在R上的偶函數(shù),f(x)滿足:對(duì)任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,則當(dāng)n∈N*時(shí),f(-n),f(n-1),f(n+1)的大小關(guān)系為f(n-1)>f(-n)>f(n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)=3x-2ln$\frac{|x|}{2}$的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=lnx-$\frac{ax}{2}$,(a>0)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對(duì)任意的a∈[1,2),都存在x0∈(0,1]使得不等式f(x0)+ea-$\frac{a}{2}$>m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知O為三角形ABC內(nèi)一點(diǎn),且滿足$\overrightarrow{OA}$+λ$\overrightarrow{OB}$+(λ-1)$\overrightarrow{OC}$=$\overrightarrow{0}$.若△OAB的面積與△OAC的面積比值為$\frac{1}{3}$,則λ的值為( 。
A.$\frac{3}{2}$B.2C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案