考點:指、對數(shù)不等式的解法
專題:不等式的解法及應(yīng)用
分析:直接利用對數(shù)的單調(diào)性轉(zhuǎn)化不等式求解即可.
解答:
解:2<log
a ,
可得log
a a
2<log
a ,
可得:
,或
.
解得:
<a<1.
故答案為:{a|
<a<1}.
點評:本題考查對數(shù)不等式的解法,考查計算能力以及轉(zhuǎn)化愛心的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)全集U=Z,集合M={1,2},P={x|-2≤x≤2,x∈Z},則P∩(∁UM)等于( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
計算:(
-tan
)•(1+tanα•tan
)=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
圓心角為60°的扇形面積為6π,求它圍成的圓錐的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象(部分)如圖所示,則ω和φ的取值分別是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=
cos(x-
),x∈R.
(1)求f(
)及f(-
)的值;
(2)若cosθ=
,θ∈(
,2π),求f(θ-
)和f(2θ+
)的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
方程x2+y2+x+y-m=0表示一個圓,則m的取值范圍是( 。
查看答案和解析>>