6.若α是第三象限的角,且tanα=3,則sinα=-$\frac{3\sqrt{10}}{10}$.

分析 利用同角三角函數(shù)的基本關(guān)系式,即可求出角的正弦函數(shù).

解答 解:tanα=3,α是第三象限角,
可得sinα=3cosα,sin2α+cos2α=1.
解得sinα=-$\frac{3\sqrt{10}}{10}$.
故答案為:-$\frac{3\sqrt{10}}{10}$.

點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值,考查計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求證:函數(shù)f(x)=3ax2+2(a+1)x+1(a∈R)在(-1,0)內(nèi)至少有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)i為虛數(shù)單位,若2+ai=b-3i,a,b∈R,則a+bi=( 。
A.2+3iB.-3+2iC.3-2iD.-3-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知x>0,y>0,x+3y+xy=9,則x+3y的最小值為( 。
A.2$\sqrt{3}$B.6C.$\sqrt{13}$-2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知直線l的方程為x+my-2m-1=0,m∈R且m≠0.
(1)若直線l在x軸,y軸上的截距之和為6,求實(shí)數(shù)m的值;
(2)設(shè)直線l與x軸,y軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求△AOB面積最小時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在△ABC中,∠C=90°,且|$\overrightarrow{CA}$|=2,|$\overrightarrow{CB}$|=3,點(diǎn)M滿足$\overrightarrow{BM}$=2$\overrightarrow{MA}$,則$\overrightarrow{CM}$•$\overrightarrow{CB}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知復(fù)數(shù)z=$\frac{{-1+\sqrt{3}i}}{2}$,則1+z+$\frac{1}{z}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖是某同學(xué)在本學(xué)期的幾次練習(xí)中數(shù)學(xué)成績(jī)莖葉圖,則中位數(shù)是(  )
A.83,85B.84C.83或85D.86

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,已知點(diǎn)C在圓O直徑BE的延長(zhǎng)線上,CA切圓O于點(diǎn)A,CD是∠ACB的平分線,交AE于點(diǎn)F,交AB于點(diǎn)D.
(I)求證:AE•AF=EF•AB;
(Ⅱ)若BD=2AD,AC=2,求線段CE的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案